Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)

Topologisch linksengelsche Elemente

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

SCHEIDERER, Claus, 1985. Topologisch linksengelsche Elemente. In: Manuscripta Mathematica. 49(3), pp. 243-266. ISSN 0025-2611. eISSN 1432-1785. Available under: doi: 10.1007/BF01215248

@article{Scheiderer1985Topol-23344, title={Topologisch linksengelsche Elemente}, year={1985}, doi={10.1007/BF01215248}, number={3}, volume={49}, issn={0025-2611}, journal={Manuscripta Mathematica}, pages={243--266}, author={Scheiderer, Claus} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:rights rdf:resource=""/> <dcterms:bibliographicCitation>Manuscripta Mathematica ; 49 (1985), 3. - S. 243-266</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:issued>1985</dcterms:issued> <dc:date rdf:datatype="">2013-05-15T06:43:32Z</dc:date> <dcterms:isPartOf rdf:resource=""/> <dcterms:title>Topologisch linksengelsche Elemente</dcterms:title> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="">2013-05-15T06:43:32Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Scheiderer, Claus</dc:contributor> <dc:creator>Scheiderer, Claus</dc:creator> <dcterms:abstract xml:lang="eng">Let G be a topological group. An element g∈G is called a topologically left Engel (t.l.e.) element iff the iterated commutators [...[[h,g],g]...,g] converge to 1 for every h∈G. This concept was introduced by V.P. Platonov, who asked various questions about these elements, e.g.: When do they form a subgroup? Especially, when does a group entirely consist of t.l.e. elements? What about the general properties of these elements? The main part of this paper deals with Lie groups, where the t.l.e. elements can be described completely. With the aid of these results, answers to Platonov's questions are given for many classes of locally compact groups.</dcterms:abstract> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account