Topologisch linksengelsche Elemente


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

SCHEIDERER, Claus, 1985. Topologisch linksengelsche Elemente. In: Manuscripta Mathematica. 49(3), pp. 243-266. ISSN 0025-2611. eISSN 1432-1785. Available under: doi: 10.1007/BF01215248

@article{Scheiderer1985Topol-23344, title={Topologisch linksengelsche Elemente}, year={1985}, doi={10.1007/BF01215248}, number={3}, volume={49}, issn={0025-2611}, journal={Manuscripta Mathematica}, pages={243--266}, author={Scheiderer, Claus} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:bibliographicCitation>Manuscripta Mathematica ; 49 (1985), 3. - S. 243-266</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:issued>1985</dcterms:issued> <dc:date rdf:datatype="">2013-05-15T06:43:32Z</dc:date> <dcterms:isPartOf rdf:resource=""/> <dcterms:title>Topologisch linksengelsche Elemente</dcterms:title> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="">2013-05-15T06:43:32Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Scheiderer, Claus</dc:contributor> <dc:creator>Scheiderer, Claus</dc:creator> <dcterms:abstract xml:lang="eng">Let G be a topological group. An element g∈G is called a topologically left Engel (t.l.e.) element iff the iterated commutators [...[[h,g],g]...,g] converge to 1 for every h∈G. This concept was introduced by V.P. Platonov, who asked various questions about these elements, e.g.: When do they form a subgroup? Especially, when does a group entirely consist of t.l.e. elements? What about the general properties of these elements? The main part of this paper deals with Lie groups, where the t.l.e. elements can be described completely. With the aid of these results, answers to Platonov's questions are given for many classes of locally compact groups.</dcterms:abstract> <dcterms:rights rdf:resource=""/> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto