Multivariate moment problems : geometry and indeterminateness

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

PUTINAR, Mihai, Claus SCHEIDERER, 2006. Multivariate moment problems : geometry and indeterminateness. In: Annali della Scuola Normale Superiore di Pisa – Classe di Scienze. 5(2), pp. 137-157. ISSN 0391-173X. eISSN 2036-2145. Available under: doi: 10.2422/2036-2145.2006.2.01

@article{Putinar2006Multi-23296, title={Multivariate moment problems : geometry and indeterminateness}, year={2006}, doi={10.2422/2036-2145.2006.2.01}, number={2}, volume={5}, issn={0391-173X}, journal={Annali della Scuola Normale Superiore di Pisa – Classe di Scienze}, pages={137--157}, author={Putinar, Mihai and Scheiderer, Claus} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:language>eng</dc:language> <dcterms:title>Multivariate moment problems : geometry and indeterminateness</dcterms:title> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Scheiderer, Claus</dc:contributor> <dcterms:isPartOf rdf:resource=""/> <dcterms:available rdf:datatype="">2013-05-16T09:27:49Z</dcterms:available> <dc:date rdf:datatype="">2013-05-16T09:27:49Z</dc:date> <dcterms:bibliographicCitation>Annali della Scuola Normale Superiore di Pisa – Classe di Scienze ; 5 (2006), 2. - S. 137-157</dcterms:bibliographicCitation> <dcterms:rights rdf:resource=""/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">The most accurate determinateness criteria for the multivariate moment problem require the density of polynomials in a weighted Lebesgue space of a generic representing measure. We propose a relaxation of such a criterion to the approximation of a single function, and based on this condition we analyze the impact of the geometry of the support on the uniqueness of the representing measure. In particular we show that a multivariate moment sequence is determinate if its support has dimension one and is virtually compact; a generalization to higher dimensions is also given. Among the one-dimensional sets which are not virtually compact, we show that at least a large subclass supports indeterminate moment sequences. Moreover, we prove that the determinateness of a moment sequence is implied by the same condition (in general easier to verify) of the push-forward sequence via finite morphisms.</dcterms:abstract> <bibo:uri rdf:resource=""/> <dc:contributor>Putinar, Mihai</dc:contributor> <dcterms:issued>2006</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Scheiderer, Claus</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Putinar, Mihai</dc:creator> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account