Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Reducing the thickness of crystalline Si wafers processed to solar cells returns two significant benefits. Firstly, processing cost is reduced by saving cost- and energy-intensive Si material. Secondly, the required diffusion length of minority carriers is smaller, thus, wafers with a smaller carrier lifetime (e.g. due to higher base doping) can be utilized. In this work, the industrially feasible "PhosTop" cell concept is employed by manufacturing large-area n-type rear junction solar cells with a screen-printed Al-alloyed emitter featuring a selective phosphorous front surface field and a SiO2/SiNx passivation on the front.
PC1D simulations for substrates with different base doping concentrations show that the range of base resistivities utilizable for those PhosTop solar cells is extended towards higher doping concentrations with decreasing wafer thickness. PC1D forecasts a conversion efficiency of the chosen 2.8 Ωcm n-type Czochralski-Si wafers of 19.2% for 100 μm thickness, merely 0.1% less than for standard thickness but saving ∼25% of the Si material. The manufactured thin large-area solar cells achieve a maximum efficiency of 19.0%.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHIELE, Yvonne, Felix BOOK, Sven SEREN, Giso HAHN, Barbara TERHEIDEN, 2012. Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers. In: Energy Procedia. 2012, 27, pp. 460-466. ISSN 1876-6102. eISSN 1876-6102. Available under: doi: 10.1016/j.egypro.2012.07.094BibTex
@article{Schiele2012Scree-22750, year={2012}, doi={10.1016/j.egypro.2012.07.094}, title={Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers}, volume={27}, issn={1876-6102}, journal={Energy Procedia}, pages={460--466}, author={Schiele, Yvonne and Book, Felix and Seren, Sven and Hahn, Giso and Terheiden, Barbara} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22750"> <dc:contributor>Terheiden, Barbara</dc:contributor> <dc:contributor>Hahn, Giso</dc:contributor> <dc:creator>Hahn, Giso</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/3.0/"/> <dcterms:bibliographicCitation>Energy Procedia ; 27 (2012). - S. 460-466</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22750/2/Schiele_227500_flat.pdf"/> <dc:rights>Attribution-NonCommercial-NoDerivs 3.0 Unported</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:language>eng</dc:language> <dcterms:issued>2012</dcterms:issued> <dc:contributor>Book, Felix</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22750/2/Schiele_227500_flat.pdf"/> <dc:contributor>Seren, Sven</dc:contributor> <dc:creator>Terheiden, Barbara</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Book, Felix</dc:creator> <dcterms:title>Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-21T08:55:33Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-21T08:55:33Z</dc:date> <dc:creator>Schiele, Yvonne</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22750"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Reducing the thickness of crystalline Si wafers processed to solar cells returns two significant benefits. Firstly, processing cost is reduced by saving cost- and energy-intensive Si material. Secondly, the required diffusion length of minority carriers is smaller, thus, wafers with a smaller carrier lifetime (e.g. due to higher base doping) can be utilized. In this work, the industrially feasible "PhosTop" cell concept is employed by manufacturing large-area n-type rear junction solar cells with a screen-printed Al-alloyed emitter featuring a selective phosphorous front surface field and a SiO2/SiNx passivation on the front.<br />PC1D simulations for substrates with different base doping concentrations show that the range of base resistivities utilizable for those PhosTop solar cells is extended towards higher doping concentrations with decreasing wafer thickness. PC1D forecasts a conversion efficiency of the chosen 2.8 Ωcm n-type Czochralski-Si wafers of 19.2% for 100 μm thickness, merely 0.1% less than for standard thickness but saving ∼25% of the Si material. The manufactured thin large-area solar cells achieve a maximum efficiency of 19.0%.</dcterms:abstract> <dc:creator>Seren, Sven</dc:creator> <dc:contributor>Schiele, Yvonne</dc:contributor> </rdf:Description> </rdf:RDF>