Voltage-sustained self-oscillation of a nano-mechanical electron shuttle

Lade...
Vorschaubild
Dateien
Voltage-sustained self-oscillation.pdf
Voltage-sustained self-oscillation.pdfGröße: 810.21 KBDownloads: 426
Datum
2012
Autor:innen
König, Daniel R.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Applied Physics Letters. 2012, 101(21), 213111. ISSN 0003-6951. eISSN 1077-3118. Available under: doi: 10.1063/1.4767359
Zusammenfassung

One core challenge of nanoelectromechanical systems (NEMS) is their efficient actuation. A promising concept superseding resonant driving is self-oscillation. Here, we demonstrate voltage-sustained self-oscillation of a nanomechanical charge shuttle. Stable transport at 4.2 K is observed for billions of shuttling cycles, giving rise to ohmic current-voltage curves with a sharp dissipation threshold. With only a few nanowatts of input energy, the presented scheme is suitable for operation in the millikelvin regime where Coulomb blockade-controlled single electron shuttling is anticipated.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KÖNIG, Daniel R., Eva M. WEIG, 2012. Voltage-sustained self-oscillation of a nano-mechanical electron shuttle. In: Applied Physics Letters. 2012, 101(21), 213111. ISSN 0003-6951. eISSN 1077-3118. Available under: doi: 10.1063/1.4767359
BibTex
@article{Konig2012Volta-22716,
  year={2012},
  doi={10.1063/1.4767359},
  title={Voltage-sustained self-oscillation of a nano-mechanical electron shuttle},
  number={21},
  volume={101},
  issn={0003-6951},
  journal={Applied Physics Letters},
  author={König, Daniel R. and Weig, Eva M.},
  note={Article Number: 213111}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22716">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-08T13:00:43Z</dcterms:available>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Weig, Eva M.</dc:creator>
    <dcterms:title>Voltage-sustained self-oscillation of a nano-mechanical electron shuttle</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:abstract xml:lang="eng">One core challenge of nanoelectromechanical systems (NEMS) is their efficient actuation. A promising concept superseding resonant driving is self-oscillation. Here, we demonstrate voltage-sustained self-oscillation of a nanomechanical charge shuttle. Stable transport at 4.2 K is observed for billions of shuttling cycles, giving rise to ohmic current-voltage curves with a sharp dissipation threshold. With only a few nanowatts of input energy, the presented scheme is suitable for operation in the millikelvin regime where Coulomb blockade-controlled single electron shuttling is anticipated.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22716/2/Voltage-sustained%20self-oscillation.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:issued>2012</dcterms:issued>
    <dc:contributor>Weig, Eva M.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-08T13:00:43Z</dc:date>
    <dc:contributor>König, Daniel R.</dc:contributor>
    <dc:creator>König, Daniel R.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22716/2/Voltage-sustained%20self-oscillation.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22716"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>Applied Physics Letters ; 101 (2012), 21. - 213111</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen