TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data

Lade...
Vorschaubild
Dateien
Schreck_227012.pdf
Schreck_227012.pdfGröße: 10.88 MBDownloads: 740
Datum
2012
Autor:innen
Bernard, Jürgen
Wilhelm, Nils
Scherer, Maximilian
May, Thorsten
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Journal of WSCG. 2012, pp. 97-106. ISSN 1213-6972. eISSN 1213-6964
Zusammenfassung

The analysis of time-dependent data is an important problem in many application domains, and interactive visualization of time-series data can help in understanding patterns in large time series data. Many effective approaches already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detection of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis task per se harder, and existing visualization techniques often do not scale well. We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series. Aggregation procedures can either be based on statistical properties of the data or on data clustering routines. Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a comprehensive data set from the field of earth observation, demonstrating the applicability and usefulness of our approach.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BERNARD, Jürgen, Nils WILHELM, Maximilian SCHERER, Thorsten MAY, Tobias SCHRECK, 2012. TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data. In: Journal of WSCG. 2012, pp. 97-106. ISSN 1213-6972. eISSN 1213-6964
BibTex
@inproceedings{Bernard2012TimeS-22701,
  year={2012},
  title={TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data},
  issn={1213-6972},
  booktitle={Journal of WSCG},
  pages={97--106},
  author={Bernard, Jürgen and Wilhelm, Nils and Scherer, Maximilian and May, Thorsten and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22701">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22701/2/Schreck_227012.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22701"/>
    <dc:creator>Bernard, Jürgen</dc:creator>
    <dc:contributor>Scherer, Maximilian</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-09T09:07:07Z</dc:date>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Wilhelm, Nils</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-09T09:07:07Z</dcterms:available>
    <dcterms:bibliographicCitation>Journal of WSCG ; 20 (2012), 2. - S. 97-106</dcterms:bibliographicCitation>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">The analysis of time-dependent data is an important problem in many application domains, and interactive visualization of time-series data can help in understanding patterns in large time series data. Many effective approaches already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detection of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis task per se harder, and existing visualization techniques often do not scale well. We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series. Aggregation procedures can either be based on statistical properties of the data or on data clustering routines. Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a comprehensive data set from the field of earth observation, demonstrating the applicability and usefulness of our approach.</dcterms:abstract>
    <dc:creator>May, Thorsten</dc:creator>
    <dc:contributor>May, Thorsten</dc:contributor>
    <dcterms:issued>2012</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Bernard, Jürgen</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22701/2/Schreck_227012.pdf"/>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:title>TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Wilhelm, Nils</dc:creator>
    <dc:creator>Scherer, Maximilian</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen