Incremental Visual Text Analytics of News Story Development


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

KRSTAJIC, Milos, Mohammad NAJM-ARAGHI, Florian MANSMANN, Daniel KEIM, 2012. Incremental Visual Text Analytics of News Story Development. IS&T/SPIE Electronic Imaging. Burlingame, California, USA. In: WONG, Pak Chung, ed. and others. Visualization and Data Analysis 2012. SPIE, pp. 829407. Available under: doi: 10.1117/12.912456

@inproceedings{Krstajic2012-06-19Incre-22596, title={Incremental Visual Text Analytics of News Story Development}, year={2012}, doi={10.1117/12.912456}, number={8294}, publisher={SPIE}, series={SPIE Proceedings}, booktitle={Visualization and Data Analysis 2012}, editor={Wong, Pak Chung}, author={Krstajic, Milos and Najm-Araghi, Mohammad and Mansmann, Florian and Keim, Daniel} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2012-06-19</dcterms:issued> <dcterms:abstract xml:lang="eng">Online news sources produce thousands of news articles every day, reporting on local and global real-world events. New information quickly replaces the old, making it difficult for readers to put current events in the context of the past. Additionally, the stories have very complex relationships and characteristics that are difficult to model: they can be weakly or strongly connected, or they can merge or split over time. In this paper, we present a visual analytics system for exploration of news topics in dynamic information streams, which combines interactive visualization and text mining techniques to facilitate the analysis of similar topics that split and merge over time. We employ text clustering techniques to automatically extract stories from online news streams and present a visualization that: 1) shows temporal characteristics of stories in di erent time frames with di erent level of detail; 2) allows incremental updates of the display without recalculating the visual features of the past data; 3) sorts the stories by minimizing clutter and overlap from edge crossings. By using interaction, stories can be filtered based on their duration and characteristics in order to be explored in full detail with details on demand. To demonstrate the usefulness of our system, case studies with real news data are presented and Show the capabilities for detailed dynamic text stream exploration.</dcterms:abstract> <dc:creator>Krstajic, Milos</dc:creator> <dc:date rdf:datatype="">2013-05-27T07:20:31Z</dc:date> <dspace:isPartOfCollection rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Najm-Araghi, Mohammad</dc:creator> <dcterms:bibliographicCitation>Visualization and Data Analysis 2012 : Burlingame, California, USA, January 23-25, 2012 / Pak Chung Wong ... (eds.). - Bellingham, Wash. : SPIE, 2012. - Artikelnummer: 829407 . - (Proceedings of SPIE ; 8294 ). - ISBN 978-0-8194-8941-8</dcterms:bibliographicCitation> <dc:rights>terms-of-use</dc:rights> <dc:creator>Keim, Daniel</dc:creator> <dcterms:title>Incremental Visual Text Analytics of News Story Development</dcterms:title> <dcterms:rights rdf:resource=""/> <dc:contributor>Najm-Araghi, Mohammad</dc:contributor> <dcterms:available rdf:datatype="">2013-05-27T07:20:31Z</dcterms:available> <dc:contributor>Krstajic, Milos</dc:contributor> <dc:creator>Mansmann, Florian</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Keim, Daniel</dc:contributor> <dc:contributor>Mansmann, Florian</dc:contributor> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto