KOPS - Das Institutionelle Repositorium der Universität Konstanz

Proportions in Categorical and Geographic Data : Visualizing the Results of Political Elections

Proportions in Categorical and Geographic Data : Visualizing the Results of Political Elections

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

STOFFEL, Florian, Halldór JANETZKO, Florian MANSMANN, 2012. Proportions in Categorical and Geographic Data : Visualizing the Results of Political Elections. the International Working Conference. Capri Island, Italy, 21. Mai 2012 - 25. Mai 2012. In: Proceedings of the International Working Conference on Advanced Visual Interfaces - AVI '12. the International Working Conference. Capri Island, Italy, 21. Mai 2012 - 25. Mai 2012. New York, New York, USA:ACM Press, pp. 457. ISBN 978-1-4503-1287-5. Available under: doi: 10.1145/2254556.2254644

@inproceedings{Stoffel2012Propo-22587, title={Proportions in Categorical and Geographic Data : Visualizing the Results of Political Elections}, year={2012}, doi={10.1145/2254556.2254644}, isbn={978-1-4503-1287-5}, address={New York, New York, USA}, publisher={ACM Press}, booktitle={Proceedings of the International Working Conference on Advanced Visual Interfaces - AVI '12}, author={Stoffel, Florian and Janetzko, Halldór and Mansmann, Florian} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/22587"> <dc:creator>Stoffel, Florian</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/42"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/42"/> <dc:language>eng</dc:language> <dc:contributor>Mansmann, Florian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dcterms:title>Proportions in Categorical and Geographic Data : Visualizing the Results of Political Elections</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22587"/> <dc:creator>Janetzko, Halldór</dc:creator> <dc:contributor>Janetzko, Halldór</dc:contributor> <dc:rights>deposit-license</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-28T15:47:04Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Colorpleth maps are commonly used to display election results, either by using one distinct color for representing the winning party in each district or by showing a proportion between two parties on a bi-polar colormap, for example, from red to blue representing Republicans vs. Democrats. Showing only the largest party may disable insights into the data whereas using bipolar colormaps works only reasonably well in cases of two parties. To overcome these limitations we introduce a new technique for visualizing proportions in such categorical data. In particular, we combine bipolar colormaps with an adapted double-rendering of polygons to simultaneously visually represent the first two categories and the spatial location. Our technique enables the recognition of close election results as well as clear majorities in a scalable manner. We proof our concept by applying our technique in a prototype implementation used to display election results from the U. S. Presidential election in 2008 and elections of the German Bundestag in 2005 and 2009. Different interesting findings are presented, which would not be recognizable when visualizing only the winner. As we additionally represent the party with the second most votes, we are able to show changes in the spatial distribution of the votes as well as outlier regions with exceptional results. Our visualization technique therefore enables valuable insights into categorical data with a spatial reference.</dcterms:abstract> <dc:contributor>Stoffel, Florian</dc:contributor> <dcterms:issued>2012</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-28T15:47:04Z</dc:date> <dcterms:bibliographicCitation>AVI 2012 : International Working Conference on Advanced Visual Interfaces ; Capri Island (Naples), Italy, May 21-25, 2012 / Genny Tortora, Stefano Levialdi and Maurizio Tucci (eds.). - New York : ACM, 2012. - S. 457-464. - ISBN 978-1-4503-1287-5</dcterms:bibliographicCitation> <dc:creator>Mansmann, Florian</dc:creator> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto