Visual Analytics for the Big Data Era - A Comparative Review of State-of-the-Art Commercial Systems

Lade...
Vorschaubild
Dateien
Zhang_225405.pdf
Zhang_225405.pdfGröße: 214 KBDownloads: 3024
Datum
2012
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
288833
DFG-Projektnummer
Projekt
MOSIPS - Modeling an Simulation of the Impact of Public Policies on SMEs
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
2012 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2012, pp. 173-182. ISBN 978-1-4673-4752-5. Available under: doi: 10.1109/VAST.2012.6400554
Zusammenfassung

Visual analytics (VA) system development started in academic research institutions where novel visualization techniques and open source toolkits were developed. Simultaneously, small software companies, sometimes spin-offs from academic research institutions, built solutions for specific application domains. In recent years we observed the following trend: some small VA companies grew exponentially; at the same time some big software vendors such as IBM and SAP started to acquire successful VA companies and integrated the acquired VA components into their existing frameworks. Generally the application domains of VA systems have broadened substantially. This phenomenon is driven by the generation of more and more data of high volume and complexity, which leads to an increasing demand for VA solutions from many application domains. In this paper we survey a selection of state-of-the-art commercial VA frameworks, complementary to an existing survey on open source VA tools. From the survey results we identify several improvement opportunities as future research directions.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2012 IEEE Conference on Visual Analytics Science and Technology (VAST), 14. Okt. 2012 - 19. Okt. 2012, Seattle, WA, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690ZHANG, Leishi, Andreas STOFFEL, Michael BEHRISCH, Sebastian MITTELSTÄDT, Tobias SCHRECK, René POMPL, Stefan Hagen WEBER, Holger LAST, Daniel A. KEIM, 2012. Visual Analytics for the Big Data Era - A Comparative Review of State-of-the-Art Commercial Systems. 2012 IEEE Conference on Visual Analytics Science and Technology (VAST). Seattle, WA, USA, 14. Okt. 2012 - 19. Okt. 2012. In: 2012 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2012, pp. 173-182. ISBN 978-1-4673-4752-5. Available under: doi: 10.1109/VAST.2012.6400554
BibTex
@inproceedings{Zhang2012-10Visua-22540,
  year={2012},
  doi={10.1109/VAST.2012.6400554},
  title={Visual Analytics for the Big Data Era - A Comparative Review of State-of-the-Art Commercial Systems},
  isbn={978-1-4673-4752-5},
  publisher={IEEE},
  booktitle={2012 IEEE Conference on Visual Analytics Science and Technology (VAST)},
  pages={173--182},
  author={Zhang, Leishi and Stoffel, Andreas and Behrisch, Michael and Mittelstädt, Sebastian and Schreck, Tobias and Pompl, René and Weber, Stefan Hagen and Last, Holger and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22540">
    <dcterms:bibliographicCitation>IEEE Conference on Visual Analytics Science &amp; Technology 2012 : Seattle, Washington, USA, 14 - 19 October 2012 ; Proceedings / Giuseppe Santucci and Matthew Ward (eds.). - Piscataway, NJ : IEEE, 2012, S. 173-182. - ISBN 978-1-4673-4753-2</dcterms:bibliographicCitation>
    <dc:creator>Weber, Stefan Hagen</dc:creator>
    <dc:contributor>Zhang, Leishi</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22540/2/Zhang_225405.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Mittelstädt, Sebastian</dc:creator>
    <dc:creator>Zhang, Leishi</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Mittelstädt, Sebastian</dc:contributor>
    <dc:contributor>Last, Holger</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Pompl, René</dc:contributor>
    <dcterms:abstract xml:lang="eng">Visual analytics (VA) system development started in academic research institutions where novel visualization techniques and open source toolkits were developed. Simultaneously, small software companies, sometimes spin-offs from academic research institutions, built solutions for specific application domains. In recent years we observed the following trend: some small VA companies grew exponentially; at the same time some big software vendors such as IBM and SAP started to acquire successful VA companies and integrated the acquired VA components into their existing frameworks. Generally the application domains of VA systems have broadened substantially. This phenomenon is driven by the generation of more and more data of high volume and complexity, which leads to an increasing demand for VA solutions from many application domains. In this paper we survey a selection of state-of-the-art commercial VA frameworks, complementary to an existing survey on open source VA tools. From the survey results we identify several improvement opportunities as future research directions.</dcterms:abstract>
    <dcterms:title>Visual Analytics for the Big Data Era - A Comparative Review of State-of-the-Art Commercial Systems</dcterms:title>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-25T08:45:36Z</dcterms:available>
    <dc:creator>Pompl, René</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Weber, Stefan Hagen</dc:contributor>
    <dc:creator>Last, Holger</dc:creator>
    <dc:creator>Stoffel, Andreas</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dc:contributor>Stoffel, Andreas</dc:contributor>
    <dcterms:issued>2012-10</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-25T08:45:36Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22540/2/Zhang_225405.pdf"/>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22540"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet