Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können derzeit keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted currently.)
Type of Publication: | Journal article |
Publication status: | Published |
Author: | Carl, Merlin; Moroz, Boris Zelikovich |
Year of publication: | 2014 |
Published in: | Journal of Mathematical Sciences ; 199 (2014), 1. - pp. 36-52. - ISSN 1072-3374. - eISSN 1573-8795 |
DOI (citable link): | https://dx.doi.org/10.1007/s10958-014-1830-2 |
Summary: |
Let P be the first-order predicate calculus with a single binary predicate letter. Making use of the techniques of Diophantine coding developed in the works on Hilbert’s tenth problem, we construct a polynomial F(t; x1, . . . , xn) with integral rational coefficients such that the Diophantine equation
F(t0;x1,…, xn)=0 is soluble in integers if and only if the formula of P numbered t0 in the chosen numbering of the formulas of P is provable in P. As an application of that construction, we describe a class of Diophantine equations that can be proved insoluble only under some additional axioms of the axiomatic set theory, for instance, assuming the existence of an inaccessible cardinal. Bibliography: 14 titles. |
Subject (DDC): | 510 Mathematics |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
CARL, Merlin, Boris Zelikovich MOROZ, 2014. On a diophantine representation of the predicate of provability. In: Journal of Mathematical Sciences. 199(1), pp. 36-52. ISSN 1072-3374. eISSN 1573-8795. Available under: doi: 10.1007/s10958-014-1830-2
@article{Carl2014dioph-21343.2, title={On a diophantine representation of the predicate of provability}, year={2014}, doi={10.1007/s10958-014-1830-2}, number={1}, volume={199}, issn={1072-3374}, journal={Journal of Mathematical Sciences}, pages={36--52}, author={Carl, Merlin and Moroz, Boris Zelikovich} }