KOPS - The Institutional Repository of the University of Konstanz

A Note on Schanuel's Conjectures for Exponential Logarithmic Power Series Fields

A Note on Schanuel's Conjectures for Exponential Logarithmic Power Series Fields

Cite This

Files in this item

Checksum: MD5:af102bbc11dae16d8f6bb58a0803768d

KUHLMANN, Salma, Mickael MATUSINSKI, Ahuva C. SHKOP, 2012. A Note on Schanuel's Conjectures for Exponential Logarithmic Power Series Fields

@unpublished{Kuhlmann2012Schan-21262, title={A Note on Schanuel's Conjectures for Exponential Logarithmic Power Series Fields}, year={2012}, author={Kuhlmann, Salma and Matusinski, Mickael, and Shkop, Ahuva C.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/21262"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Shkop, Ahuva C.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21262"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-31T09:04:56Z</dcterms:available> <dcterms:issued>2012</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21262/1/kuhlmann_212627.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dc:creator>Kuhlmann, Salma</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">We consider a valued field of characteristic 0 with embedded residue field. We fix an additive complement to the valuation ring and its induced "constant term" map. We further assume that the valued field is endowed with an exponential map, and a derivation compatible with the exponential. We use a result of Ax to evaluate the transcendence degree of subfields generated by field elements which have constant term equal to 0 and are linearly independent. We apply our result to the examples of Logarithmic-Exponential power series fields, Exponential-Logarithmic power series fields, and Exponential Hardy fields.</dcterms:abstract> <dcterms:title>A Note on Schanuel's Conjectures for Exponential Logarithmic Power Series Fields</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21262/1/kuhlmann_212627.pdf"/> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:contributor>Shkop, Ahuva C.</dc:contributor> <dc:contributor>Matusinski, Mickael,</dc:contributor> <dc:creator>Matusinski, Mickael,</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-31T09:04:56Z</dc:date> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

kuhlmann_212627.pdf 111

This item appears in the following Collection(s)

Search KOPS


Browse

My Account