Integer-valued definable functions

Thumbnail Image
Date
2012
Authors
Jones, Gareth O.
Wilkie, Alex J.
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Bulletin of the London Mathematical Society ; 44 (2012), 6. - pp. 1285-1291. - ISSN 0024-6093. - eISSN 1469-2120
Abstract
We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a definable, analytic function f : [0,∞)k → |R is such that f(|N^k) ⊆ |Z, then either sup|¯x| <= r |f(¯x)| grows faster
than exp(rδ), for some δ > 0, or f is a polynomial over Q.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Reell-analytische Funktionen,O-Minimalität
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690JONES, Gareth O., Margaret E. M. THOMAS, Alex J. WILKIE, 2012. Integer-valued definable functions. In: Bulletin of the London Mathematical Society. 44(6), pp. 1285-1291. ISSN 0024-6093. eISSN 1469-2120. Available under: doi: 10.1112/blms/bds059
BibTex
@article{Jones2012Integ-20448,
  year={2012},
  doi={10.1112/blms/bds059},
  title={Integer-valued definable functions},
  number={6},
  volume={44},
  issn={0024-6093},
  journal={Bulletin of the London Mathematical Society},
  pages={1285--1291},
  author={Jones, Gareth O. and Thomas, Margaret E. M. and Wilkie, Alex J.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/20448">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Thomas, Margaret E. M.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20448/1/Integer-valued%20definable%20functions.pdf"/>
    <dc:contributor>Jones, Gareth O.</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/20448"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:bibliographicCitation>The Bulletin of the London Mathematical Society ; 44 (2012), 6. - S. 1285-1291</dcterms:bibliographicCitation>
    <dc:contributor>Wilkie, Alex J.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Jones, Gareth O.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:title>Integer-valued definable functions</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/20448/1/Integer-valued%20definable%20functions.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-31T23:25:05Z</dcterms:available>
    <dc:creator>Wilkie, Alex J.</dc:creator>
    <dcterms:abstract xml:lang="eng">We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a definable, analytic function f : [0,∞)&lt;sup&gt;k&lt;/sup&gt; → |R is such that f(|N^k) ⊆ |Z, then either sup&lt;sub&gt;|¯x| &lt;= r&lt;/sub&gt; |f(¯x)| grows faster&lt;br /&gt;than exp(r&lt;sup&gt;δ&lt;/sup&gt;), for some δ &gt; 0, or f is a polynomial over Q.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-11-20T09:04:11Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:creator>Thomas, Margaret E. M.</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed