Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Journal article |
Publication status: | Published |
Author: | Fang, Beixiang; Racke, Reinhard |
Year of publication: | 2013 |
Published in: | Journal of Mathematical Analysis and Applications ; 401 (2013), 1. - pp. 9-28. - ISSN 0022-247X. - eISSN 1096-0813 |
DOI (citable link): | https://dx.doi.org/10.1016/j.jmaa.2012.10.068 |
Summary: |
We consider the compressible Euler equations in three space dimensions where heat conduction is modeled by Cattaneo’s law instead of Fourier’s law. For the arising purely hyperbolic system, the asymptotic behavior of discontinuous solutions to the linearized Cauchy problem is investigated. We give a description of the behavior as time tends to infinity and, in particular, as the relaxation parameter tends to zero. The latter corresponds to the singular limit and a formal convergence to the classical (i.e. Fourier law for the heat flux–temperature relation) Euler system. We recover a phenomenon observed for hyperbolic thermoelasticity, namely the dependence of the asymptotic behavior on the mean curvature of the initial surface of discontinuity; in addition, we observe a more complex behavior in general.
|
Subject (DDC): | 510 Mathematics |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
FANG, Beixiang, Reinhard RACKE, 2013. Compressible Euler equations with second sound : Asymptotics of discontinuous solutions. In: Journal of Mathematical Analysis and Applications. 401(1), pp. 9-28. ISSN 0022-247X. eISSN 1096-0813. Available under: doi: 10.1016/j.jmaa.2012.10.068
@article{Fang2013Compr-20103.2, title={Compressible Euler equations with second sound : Asymptotics of discontinuous solutions}, year={2013}, doi={10.1016/j.jmaa.2012.10.068}, number={1}, volume={401}, issn={0022-247X}, journal={Journal of Mathematical Analysis and Applications}, pages={9--28}, author={Fang, Beixiang and Racke, Reinhard} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/20103.2"> <dcterms:abstract xml:lang="eng">We consider the compressible Euler equations in three space dimensions where heat conduction is modeled by Cattaneo’s law instead of Fourier’s law. For the arising purely hyperbolic system, the asymptotic behavior of discontinuous solutions to the linearized Cauchy problem is investigated. We give a description of the behavior as time tends to infinity and, in particular, as the relaxation parameter tends to zero. The latter corresponds to the singular limit and a formal convergence to the classical (i.e. Fourier law for the heat flux–temperature relation) Euler system. We recover a phenomenon observed for hyperbolic thermoelasticity, namely the dependence of the asymptotic behavior on the mean curvature of the initial surface of discontinuity; in addition, we observe a more complex behavior in general.</dcterms:abstract> <dcterms:issued>2013</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-19T13:00:41Z</dc:date> <dc:creator>Fang, Beixiang</dc:creator> <dc:contributor>Fang, Beixiang</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/20103.2"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dcterms:title>Compressible Euler equations with second sound : Asymptotics of discontinuous solutions</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-19T13:00:41Z</dcterms:available> <dc:creator>Racke, Reinhard</dc:creator> <dc:contributor>Racke, Reinhard</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>