KOPS - Das Institutionelle Repositorium der Universität Konstanz

Compressible Euler equations with second sound : asymptotics of discontinuous solutions

Compressible Euler equations with second sound : asymptotics of discontinuous solutions

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:b7c494dfa8387c08f058c757fdb37886

FANG, Beixiang, Reinhard RACKE, 2012. Compressible Euler equations with second sound : asymptotics of discontinuous solutions

@unpublished{Fang2012Compr-20103, title={Compressible Euler equations with second sound : asymptotics of discontinuous solutions}, year={2012}, author={Fang, Beixiang and Racke, Reinhard} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/20103"> <dcterms:title>Compressible Euler equations with second sound : asymptotics of discontinuous solutions</dcterms:title> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dc:contributor>Fang, Beixiang</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/20103"/> <dcterms:issued>2012</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-08-15T08:58:45Z</dc:date> <dc:creator>Fang, Beixiang</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-08-15T08:58:45Z</dcterms:available> <dc:rights>deposit-license</dc:rights> <dc:language>eng</dc:language> <dc:creator>Racke, Reinhard</dc:creator> <dc:contributor>Racke, Reinhard</dc:contributor> <dcterms:abstract xml:lang="eng">We consider the compressible Euler equations in three space dimensions where heat conduction is modeled by Cattaneo's law instead of Fourier's law. For the arising purely hyperbolic system, the asymptotic behavior of discontinuous solutions to the linearized Cauchy problem is investigated. We give a description of the behavior as time tends to infinity and, in particular, as the relaxation parameter tends to zero. The latter corresponds to the singular limit and a formal convergence to the classical (i.e. Fourier law for the heat flux - temperature relation)Euler system. We recover a henomenon observed for hyperbolic thermoelasticity, namely the dependence of the asymptotic behavior on the mean curvature of the initial surface of discontinuity; in addition, we observe a more complex behavior in general.</dcterms:abstract> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

306_Fang_Racke.pdf 38

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto