Node Similarities from Spreading Activation

Thumbnail Image
Date
2012
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
BISON, RTD Forschungsprojekt
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a collection
Publication status
Published in
Bisociative Knowledge Discovery / Berthold, Michael R. (ed.). - Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. - (Lecture Notes in Computer Science ; 7250). - pp. 246-262. - ISBN 978-3-642-31829-0
Abstract
In this paper we propose two methods to derive different kinds of node neighborhood based similarities in a network. The first similarity measure focuses on the overlap of direct and indirect neighbors. The second similarity compares nodes based on the structure of their possibly also very distant neighborhoods. Both similarities are derived from spreading activation patterns over time. Whereas in the first method the activation patterns are directly compared, in the second method the relative change of activation over time is compared. We applied both methods to a real world graph dataset and discuss some of the results in more detail.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Bisoziation,Spreading activation
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690THIEL, Kilian, Michael R. BERTHOLD, 2012. Node Similarities from Spreading Activation. In: BERTHOLD, Michael R., ed.. Bisociative Knowledge Discovery. Berlin, Heidelberg:Springer Berlin Heidelberg, pp. 246-262. ISBN 978-3-642-31829-0. Available under: doi: 10.1007/978-3-642-31830-6_17
BibTex
@incollection{Thiel2012Simil-19474,
  year={2012},
  doi={10.1007/978-3-642-31830-6_17},
  title={Node Similarities from Spreading Activation},
  number={7250},
  isbn={978-3-642-31829-0},
  publisher={Springer Berlin Heidelberg},
  address={Berlin, Heidelberg},
  series={Lecture Notes in Computer Science},
  booktitle={Bisociative Knowledge Discovery},
  pages={246--262},
  editor={Berthold, Michael R.},
  author={Thiel, Kilian and Berthold, Michael R.},
  note={Open Access}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19474">
    <dcterms:title>Node Similarities from Spreading Activation</dcterms:title>
    <dc:contributor>Thiel, Kilian</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19474/2/Thiel_194740.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19474"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-07-09T10:14:18Z</dc:date>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19474/2/Thiel_194740.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-07-09T10:14:18Z</dcterms:available>
    <dcterms:bibliographicCitation>Bisociative Knowledge Discovery : An Introduction to Concept, Algorithms, Tools, and Applications / Michael R. Berthold (ed.). - Heidelberg [u.a.] : Springer, 2012. - S. 246-262. - (Lecture Notes in Computer Science ; 7250 : Lecture notes in artificial intelligence). - ISBN 978-3-642-31829-0</dcterms:bibliographicCitation>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Thiel, Kilian</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">In this paper we propose two methods to derive different kinds of node neighborhood based similarities in a network. The first similarity measure focuses on the overlap of direct and indirect neighbors. The second similarity compares nodes based on the structure of their possibly also very distant neighborhoods. Both similarities are derived from spreading activation patterns over time. Whereas in the first method the activation patterns are directly compared, in the second method the relative change of activation over time is compared. We applied both methods to a real world graph dataset and discuss some of the results in more detail.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Open Access
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed