Node Similarities from Spreading Activation

Cite This

Files in this item

Checksum: MD5:f65e66b5272bb73772c960479c80363d

THIEL, Kilian, Michael R. BERTHOLD, 2012. Node Similarities from Spreading Activation. In: BERTHOLD, Michael R., ed.. Bisociative Knowledge Discovery. Berlin, Heidelberg:Springer Berlin Heidelberg, pp. 246-262. ISBN 978-3-642-31829-0. Available under: doi: 10.1007/978-3-642-31830-6_17

@incollection{Thiel2012Simil-19474, title={Node Similarities from Spreading Activation}, year={2012}, doi={10.1007/978-3-642-31830-6_17}, number={7250}, isbn={978-3-642-31829-0}, address={Berlin, Heidelberg}, publisher={Springer Berlin Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Bisociative Knowledge Discovery}, pages={246--262}, editor={Berthold, Michael R.}, author={Thiel, Kilian and Berthold, Michael R.}, note={Open Access} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:title>Node Similarities from Spreading Activation</dcterms:title> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:abstract xml:lang="eng">In this paper we propose two methods to derive different kinds of node neighborhood based similarities in a network. The first similarity measure focuses on the overlap of direct and indirect neighbors. The second similarity compares nodes based on the structure of their possibly also very distant neighborhoods. Both similarities are derived from spreading activation patterns over time. Whereas in the first method the activation patterns are directly compared, in the second method the relative change of activation over time is compared. We applied both methods to a real world graph dataset and discuss some of the results in more detail.</dcterms:abstract> <dspace:hasBitstream rdf:resource=""/> <dcterms:rights rdf:resource=""/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource=""/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2012</dcterms:issued> <dc:contributor>Thiel, Kilian</dc:contributor> <dcterms:hasPart rdf:resource=""/> <dc:date rdf:datatype="">2012-07-09T10:14:18Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:bibliographicCitation>Bisociative Knowledge Discovery : An Introduction to Concept, Algorithms, Tools, and Applications / Michael R. Berthold (ed.). - Heidelberg [u.a.] : Springer, 2012. - S. 246-262. - (Lecture Notes in Computer Science ; 7250 : Lecture notes in artificial intelligence). - ISBN 978-3-642-31829-0</dcterms:bibliographicCitation> <dc:creator>Thiel, Kilian</dc:creator> <dcterms:available rdf:datatype="">2012-07-09T10:14:18Z</dcterms:available> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Berthold, Michael R.</dc:creator> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Thiel_194740.pdf 672

This item appears in the following Collection(s)

Search KOPS


My Account