From Information Networks to Bisociative Information Networks

Cite This

Files in this item

Checksum: MD5:18572824f328b77b1ba2e03e40034a19

KÖTTER, Tobias, Michael R. BERTHOLD, 2012. From Information Networks to Bisociative Information Networks. In: BERTHOLD, Michael R., ed.. Bisociative Knowledge Discovery. Berlin, Heidelberg:Springer Berlin Heidelberg, pp. 33-50. ISBN 978-3-642-31829-0. Available under: doi: 10.1007/978-3-642-31830-6_3

@incollection{Kotter2012Infor-19464, title={From Information Networks to Bisociative Information Networks}, year={2012}, doi={10.1007/978-3-642-31830-6_3}, number={7250}, isbn={978-3-642-31829-0}, address={Berlin, Heidelberg}, publisher={Springer Berlin Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Bisociative Knowledge Discovery}, pages={33--50}, editor={Berthold, Michael R.}, author={Kötter, Tobias and Berthold, Michael R.}, note={Open Access} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:rights rdf:resource=""/> <dcterms:abstract xml:lang="eng">The integration of heterogeneous data from various domains without the need for prefiltering prepares the ground for bisociative knowledge discoveries where attempts are made to find unexpected relations across seemingly unrelated domains. Information networks, due to their flexible data structure, lend themselves perfectly to the integration of these heterogeneous data sources. This chapter provides an overview of different types of information networks and categorizes them by identifying several key properties of information units and relations which reflect the expressiveness and thus ability of an information network to model heterogeneous data from diverse domains. The chapter progresses by describing a new type of information network known as bisociative information networks. This kind of network combines the key properties of existing networks in order to provide the foundation for bisociative knowledge discoveries. Finally based on this data structure three different patterns are described that fulfill the requirements of a bisociation by connecting concepts from seemingly unrelated domains.</dcterms:abstract> <dc:creator>Kötter, Tobias</dc:creator> <dc:contributor>Kötter, Tobias</dc:contributor> <dc:contributor>Berthold, Michael R.</dc:contributor> <bibo:uri rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <dspace:hasBitstream rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:isPartOf rdf:resource=""/> <dcterms:bibliographicCitation>Bisociative Knowledge Discovery : An Introduction to Concept, Algorithms, Tools, and Applications / Michael R. Berthold (ed.). - Heidelberg [u.a.] : Springer, 2012. - S. 33-50. - (Lecture Notes in Computer Science ; 7250 : Lecture notes in artificial intelligence). - ISBN 978-3-642-31829-0</dcterms:bibliographicCitation> <dc:date rdf:datatype="">2012-07-09T09:01:56Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2012</dcterms:issued> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="">2012-07-09T09:01:56Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:title>From Information Networks to Bisociative Information Networks</dcterms:title> <dcterms:hasPart rdf:resource=""/> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Koetter_194642.pdf 202

This item appears in the following Collection(s)

Search KOPS


My Account