## Sums of Squares in Algebraic Function Fields

2011
Dissertation
##### Zusammenfassung
We study sums of squares in algebraic function fields over formally real fields, in particular the arithmetic properties of the field of constants that are necessary or sufficient for a small Pythagoras number of the function field.
##### Zusammenfassung in einer weiteren Sprache
Wir studieren Quadratsummen in algebraischen FunktionenkÃ¶rpern Ã¼ber reellen KÃ¶rper, insbesondere arithmetische Eigenschaften des KonstantenkÃ¶rpers welche notwendig oder hinreichend fÃ¼r eine kleine Pythagoraszahl des FunktionenkÃ¶rpers sind.
510 Mathematik
##### SchlagwÃ¶rter
sums of squares,quadratic forms,curves and fibered surfaces,local-global principle,rational points,scalar restriction
##### Zitieren
ISO 690GRIMM, David, 2011. Sums of Squares in Algebraic Function Fields [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Grimm2011Squar-19398,
year={2011},
title={Sums of Squares in Algebraic Function Fields},
author={Grimm, David},
school={UniversitÃ¤t Konstanz}
}

RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<dc:language>eng</dc:language>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
<dc:contributor>Grimm, David</dc:contributor>
<dcterms:abstract xml:lang="eng">We study sums of squares in algebraic function fields over formally real fields, in particular the arithmetic properties of the field of constants that are necessary or sufficient for a small Pythagoras number of the function field.</dcterms:abstract>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-07-03T06:41:45Z</dcterms:available>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:rights>terms-of-use</dc:rights>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19398/1/Diss_Grimm.pdf"/>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19398"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-07-03T06:41:45Z</dc:date>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19398/1/Diss_Grimm.pdf"/>
<dcterms:issued>2011</dcterms:issued>
<dcterms:title>Sums of Squares in Algebraic Function Fields</dcterms:title>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:creator>Grimm, David</dc:creator>
</rdf:Description>
</rdf:RDF>

July 21, 2011