Analytic semigroups of pseudodifferential operators on vector-valued Sobolev spaces
Lade...
Dateien
Datum
2012
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung
In this paper we study continuity and invertibility of pseudodifferential operators with non-regular Banach space valued symbols. The corresponding pseudodifferential operators generate analytic semigroups on the Sobolev spaces Wpk(Rn,E). Here E is an arbitrary Banach space. We also apply the theory to solve non-autonomous parabolic pseudodifferential equations in Sobolev spaces.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Pseudodifferentialoperatoren, vektorwertige Banachräume
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BARRAZA MARTINEZ, Bienvenido, Robert DENK, Jairo HERNANDEZ MONZON, 2012. Analytic semigroups of pseudodifferential operators on vector-valued Sobolev spacesBibTex
@unpublished{BarrazaMartinez2012Analy-19352, year={2012}, title={Analytic semigroups of pseudodifferential operators on vector-valued Sobolev spaces}, author={Barraza Martinez, Bienvenido and Denk, Robert and Hernandez Monzon, Jairo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19352"> <dc:creator>Hernandez Monzon, Jairo</dc:creator> <dcterms:title>Analytic semigroups of pseudodifferential operators on vector-valued Sobolev spaces</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-24T07:44:41Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-24T07:44:41Z</dcterms:available> <dcterms:issued>2012</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19352/2/Denk_Analytic%20semigroups.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Denk, Robert</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19352/2/Denk_Analytic%20semigroups.pdf"/> <dcterms:abstract xml:lang="eng">In this paper we study continuity and invertibility of pseudodifferential operators with non-regular Banach space valued symbols. The corresponding pseudodifferential operators generate analytic semigroups on the Sobolev spaces W<sub>p</sub><sup>k</sup>(R<sup>n</sup>,E). Here E is an arbitrary Banach space. We also apply the theory to solve non-autonomous parabolic pseudodifferential equations in Sobolev spaces.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19352"/> <dc:contributor>Hernandez Monzon, Jairo</dc:contributor> <dc:creator>Barraza Martinez, Bienvenido</dc:creator> <dc:contributor>Barraza Martinez, Bienvenido</dc:contributor> <dc:contributor>Denk, Robert</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja