Resolvent estimates for elliptic systems in function spaces of higher regularity

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:76768b9440e21bcf9aaad6b90fcb21dd

DENK, Robert, Michael DREHER, 2011. Resolvent estimates for elliptic systems in function spaces of higher regularity. In: Electronic journal of differential equations(109), pp. 1-12

@article{Denk2011Resol-19317, title={Resolvent estimates for elliptic systems in function spaces of higher regularity}, year={2011}, number={109}, journal={Electronic journal of differential equations}, pages={1--12}, author={Denk, Robert and Dreher, Michael} }

Denk, Robert Dreher, Michael We consider parameter-elliptic boundary value problems and uniform a priori estimates in L<sup>p</sup>-Sobolev spaces of Bessel potential and Besov type. The problems considered are systems of uniform order and mixed-order systems (Douglis-Nirenberg systems). It is shown that compatibility conditions on the data are necessary for such estimates to hold. In particular, we consider the realization of the boundary value problem as an unbounded operator with the ground space being a closed subspace of a Sobolev space and give necessary and sufficient conditions for the realization to generate an analytic semigroup. Dreher, Michael deposit-license Publ. in: Electronic journal of differential equations [Elektronische Ressource] ; 2011 (2011), 109. - S. 1-12 2012-05-18T09:27:46Z eng Resolvent estimates for elliptic systems in function spaces of higher regularity 2011 2012-05-18T09:27:46Z Denk, Robert

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Denk_193175.pdf 201

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto