Resolvent estimates for elliptic systems in function spaces of higher regularity

Thumbnail Image
Date
2011
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Electronic journal of differential equations ; 2011, 109. - pp. 1-12
Abstract
We consider parameter-elliptic boundary value problems and uniform a priori estimates in Lp-Sobolev spaces of Bessel potential and Besov type. The problems considered are systems of uniform order and mixed-order systems (Douglis-Nirenberg systems). It is shown that compatibility conditions on the data are necessary for such estimates to hold. In particular, we consider the realization of the boundary value problem as an unbounded operator with the ground space being a closed subspace of a Sobolev space and give necessary and sufficient conditions for the realization to generate an analytic semigroup.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Parameter-ellipticity,Douglis-Nirenberg systems,analytic semigroups
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690DENK, Robert, Michael DREHER, 2011. Resolvent estimates for elliptic systems in function spaces of higher regularity. In: Electronic journal of differential equations(109), pp. 1-12
BibTex
@article{Denk2011Resol-19317,
  year={2011},
  title={Resolvent estimates for elliptic systems in function spaces of higher regularity},
  number={109},
  journal={Electronic journal of differential equations},
  pages={1--12},
  author={Denk, Robert and Dreher, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19317">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Dreher, Michael</dc:contributor>
    <dc:creator>Denk, Robert</dc:creator>
    <dcterms:issued>2011</dcterms:issued>
    <dc:contributor>Denk, Robert</dc:contributor>
    <dc:creator>Dreher, Michael</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19317/2/Denk_193175.pdf"/>
    <dcterms:bibliographicCitation>Publ. in: Electronic journal of differential equations [Elektronische Ressource] ; 2011 (2011), 109. - S. 1-12</dcterms:bibliographicCitation>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19317"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-18T09:27:46Z</dc:date>
    <dcterms:abstract xml:lang="eng">We consider parameter-elliptic boundary value problems and uniform a priori estimates in L&lt;sup&gt;p&lt;/sup&gt;-Sobolev spaces of Bessel potential and Besov type. The problems considered are systems of uniform order and mixed-order systems (Douglis-Nirenberg systems). It is shown that compatibility conditions on the data are necessary for such estimates to hold. In particular, we consider the realization of the boundary value problem as an unbounded operator with the ground space being a closed subspace of a Sobolev space and give necessary and sufficient conditions for the realization to generate an analytic semigroup.</dcterms:abstract>
    <dcterms:title>Resolvent estimates for elliptic systems in function spaces of higher regularity</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-18T09:27:46Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19317/2/Denk_193175.pdf"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed