Stability of hyperbolic space under Ricci flow

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

SCHNÜRER, Oliver Christian, Felix SCHULZE, Miles SIMON, 2011. Stability of hyperbolic space under Ricci flow. In: Communications in analysis and geometry. 19(5), pp. 1023-1047. Available under: doi: 10.4310/CAG.2011.v19.n5.a8

@article{Schnurer2011Stabi-19316, title={Stability of hyperbolic space under Ricci flow}, year={2011}, doi={10.4310/CAG.2011.v19.n5.a8}, number={5}, volume={19}, journal={Communications in analysis and geometry}, pages={1023--1047}, author={Schnürer, Oliver Christian and Schulze, Felix and Simon, Miles} }

Simon, Miles We study the Ricci flow of initial metrics which are C<sup>0</sup>-perturbations of the hyperbolic metric on H<sup>n</sup>[Hyperbolic n-space]. If the perturbation is bounded in the L<sup>2</sup>-sense, and small enough in the C<sup>0</sup>-sense, then we show the following: In dimensions four and higher, the scaled Ricci harmonic map heat flow of such a metric converges smoothly, uniformly and exponentially fast in all C<sup>k</sup>-norms and in the L<sup>2</sup>-norm to the hyperbolic metric as time approaches infinity. We also prove a related result for the Ricci flow and for the two-dimensional conformal Ricci flow. Schulze, Felix Schnürer, Oliver Christian eng Publ. in: Communications in analysis and geometry ; 19 (2011), 5. - S. 1023-1047 Simon, Miles deposit-license Schulze, Felix Schnürer, Oliver Christian Stability of hyperbolic space under Ricci flow 2012-06-13T10:54:11Z 2012-06-13T10:54:11Z 2011

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto