Convex hulls of curves of genus one

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2011
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Advances in Mathematics. 2011, 228(5), pp. 2606-2622. ISSN 0001-8708. Available under: doi: 10.1016/j.aim.2011.07.014
Zusammenfassung

Let C be a real nonsingular affine curve of genus one, embedded in affine n-space, whose set of real points is compact. For any polynomial f which is nonnegative on C(R), we prove that there exist polynomials fi with View the MathML source (mod IC) and such that the degrees deg(fi) are bounded in terms of deg(f) only. Using Lasserreʼs relaxation method, we deduce an explicit representation of the convex hull of C(R) in Rn by a lifted linear matrix inequality. This is the first instance in the literature where such a representation is given for the convex hull of a nonrational variety. The same works for convex hulls of (singular) curves whose normalization is C. We then make a detailed study of the associated degree bounds. These bounds are directly related to size and dimension of the projected matrix pencils. In particular, we prove that these bounds tend to infinity when the curve C degenerates suitably into a singular curve, and we provide explicit lower bounds as well.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Real algebraic curves, convex hulls, elliptic curves, linear matrix inequalities, spectrahedra, Lasserre relaxation
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SCHEIDERER, Claus, 2011. Convex hulls of curves of genus one. In: Advances in Mathematics. 2011, 228(5), pp. 2606-2622. ISSN 0001-8708. Available under: doi: 10.1016/j.aim.2011.07.014
BibTex
@article{Scheiderer2011Conve-19147,
  year={2011},
  doi={10.1016/j.aim.2011.07.014},
  title={Convex hulls of curves of genus one},
  number={5},
  volume={228},
  issn={0001-8708},
  journal={Advances in Mathematics},
  pages={2606--2622},
  author={Scheiderer, Claus}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19147">
    <dc:contributor>Scheiderer, Claus</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Let C be a real nonsingular affine curve of genus one, embedded in affine n-space, whose set of real points is compact. For any polynomial f which is nonnegative on C(R), we prove that there exist polynomials fi with View the MathML source (mod IC) and such that the degrees deg(fi) are bounded in terms of deg(f) only. Using Lasserreʼs relaxation method, we deduce an explicit representation of the convex hull of C(R) in Rn by a lifted linear matrix inequality. This is the first instance in the literature where such a representation is given for the convex hull of a nonrational variety. The same works for convex hulls of (singular) curves whose normalization is C. We then make a detailed study of the associated degree bounds. These bounds are directly related to size and dimension of the projected matrix pencils. In particular, we prove that these bounds tend to infinity when the curve C degenerates suitably into a singular curve, and we provide explicit lower bounds as well.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:bibliographicCitation>Publ. in: Advances in Mathematics ; 228 (2011), 5. - pp. 2606-2622</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19147"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Scheiderer, Claus</dc:creator>
    <dcterms:title>Convex hulls of curves of genus one</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-02T09:46:59Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-02T09:46:59Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen