KOPS - Das Institutionelle Repositorium der Universität Konstanz

An inflated multivariate integer count hurdle model : an application to bid and ask quote dynamics

An inflated multivariate integer count hurdle model : an application to bid and ask quote dynamics

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

BIEN, Katarzyna, Ingmar NOLTE, Winfried POHLMEIER, 2011. An inflated multivariate integer count hurdle model : an application to bid and ask quote dynamics. In: Journal of Applied Econometrics. 26(4), pp. 669-707. ISSN 0883-7252

@article{Bien2011infla-19100, title={An inflated multivariate integer count hurdle model : an application to bid and ask quote dynamics}, year={2011}, doi={10.1002/jae.1122}, number={4}, volume={26}, issn={0883-7252}, journal={Journal of Applied Econometrics}, pages={669--707}, author={Bien, Katarzyna and Nolte, Ingmar and Pohlmeier, Winfried} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/19100"> <dc:contributor>Pohlmeier, Winfried</dc:contributor> <dcterms:bibliographicCitation>Publ. in: Journal of Applied Econometrics ; 26 (2011), 4. - pp. 669-707</dcterms:bibliographicCitation> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-02T08:27:40Z</dc:date> <dcterms:issued>2011</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19100"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-05-02T08:27:40Z</dcterms:available> <dc:creator>Bien, Katarzyna</dc:creator> <dcterms:abstract xml:lang="eng">In this paper we develop a model for the conditional inflated multivariate density of integer count variables with domain ℤn, n ∈ ℕ. Our modelling framework is based on a copula approach and can be used for a broad set of applications where the primary characteristics of the data are: (i) discrete domain; (ii) the tendency to cluster at certain outcome values; and (iii) contemporaneous dependence. These kinds of properties can be found for high- or ultra-high-frequency data describing the trading process on financial markets. We present a straightforward sampling method for such an inflated multivariate density through the application of an independence Metropolis–Hastings sampling algorithm. We demonstrate the power of our approach by modelling the conditional bivariate density of bid and ask quote changes in a high-frequency setup. We show how to derive the implied conditional discrete density of the bid–ask spread, taking quote clusterings (at multiples of 5 ticks) into account.</dcterms:abstract> <dc:contributor>Nolte, Ingmar</dc:contributor> <dc:creator>Pohlmeier, Winfried</dc:creator> <dc:contributor>Bien, Katarzyna</dc:contributor> <dc:creator>Nolte, Ingmar</dc:creator> <dcterms:title>An inflated multivariate integer count hurdle model : an application to bid and ask quote dynamics</dcterms:title> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dc:rights>deposit-license</dc:rights> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto