Visual sentiment analysis on Twitter data streams

Cite This

Files in this item

Checksum: MD5:87169716e5814324ceb497beaf618a79

HAO, Ming, Christian ROHRDANTZ, Halldor JANETZKO, Umeshwar DAYAL, Daniel A. KEIM, Lars-Erik HAUG, Mei-Chun HSU, 2011. Visual sentiment analysis on Twitter data streams. 2011 IEEE Conference on Visual Analytics Science and Technology (VAST). Providence, RI, USA, Oct 23, 2011 - Oct 28, 2011. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, pp. 277-278. ISBN 978-1-4673-0015-5. Available under: doi: 10.1109/VAST.2011.6102472

@inproceedings{Hao2011-10Visua-19048, title={Visual sentiment analysis on Twitter data streams}, year={2011}, doi={10.1109/VAST.2011.6102472}, isbn={978-1-4673-0015-5}, publisher={IEEE}, booktitle={2011 IEEE Conference on Visual Analytics Science and Technology (VAST)}, pages={277--278}, author={Hao, Ming and Rohrdantz, Christian and Janetzko, Halldor and Dayal, Umeshwar and Keim, Daniel A. and Haug, Lars-Erik and Hsu, Mei-Chun} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:abstract xml:lang="deu">Twitter currently receives about 190 million tweets (small textbased Web posts) a day, in which people share their comments regarding a wide range of topics. A large number of tweets include opinions about products and services. However, with Twitter being a relatively new phenomenon, these tweets are underutilized as a source for evaluating customer sentiment. To explore high-volume twitter data, we introduce three novel timebased visual sentiment analysis techniques: (1) topic-based sentiment analysis that extracts, maps, and measures customer opinions; (2) stream analysis that identifies interesting tweets based on their density, negativity, and influence characteristics; and (3) pixel cell-based sentiment calendars and high density geo maps that visualize large volumes of data in a single view. We applied these techniques to a variety of twitter data, (e.g., movies, amusement parks, and hotels) to show their distribution and patterns, and to identify influential opinions.</dcterms:abstract> <dcterms:issued>2011-10</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dc:creator>Rohrdantz, Christian</dc:creator> <dc:contributor>Janetzko, Halldor</dc:contributor> <dc:contributor>Rohrdantz, Christian</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dc:creator>Hao, Ming</dc:creator> <dcterms:rights rdf:resource=""/> <dspace:hasBitstream rdf:resource=""/> <dc:creator>Haug, Lars-Erik</dc:creator> <dcterms:isPartOf rdf:resource=""/> <bibo:uri rdf:resource=""/> <dc:creator>Dayal, Umeshwar</dc:creator> <dc:contributor>Haug, Lars-Erik</dc:contributor> <dc:contributor>Hsu, Mei-Chun</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Janetzko, Halldor</dc:creator> <dcterms:available rdf:datatype="">2012-04-18T10:47:49Z</dcterms:available> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Hao, Ming</dc:contributor> <dcterms:title>Visual sentiment analysis on Twitter data streams</dcterms:title> <dc:date rdf:datatype="">2012-04-18T10:47:49Z</dc:date> <dc:creator>Hsu, Mei-Chun</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:hasPart rdf:resource=""/> <dcterms:bibliographicCitation>2011 IEEE Conference on Visual Analytics Science and Technology (VAST 2011) : Proceedings of a meeting held 23-28 October 2011, Providence, Rhode Island, USA / Miksch, Silvia... (Ed.). - Piscataway : IEEE, 2011. - S. 275-276. - ISBN 978-1-4673-0015-5</dcterms:bibliographicCitation> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Hao_190485.pdf 2637

This item appears in the following Collection(s)

Search KOPS


My Account