Maximum likelihood estimation of the differencing parameter for invertible short and long memory Autoregressive Integrated Moving Average models
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In practical applications of Box-Jenkins autoregressive integrated moving average (ARIMA) models, the number of times that the observed time series must be differenced to achieve approximate stationarity is usually determined by careful, but mostly informal, analysis of the differenced series. For many time series, some differencing seems appropriate, but taking the first or the second difference may be too strong. As an alternative, Hosking, and Granger and Joyeux proposed the use of fractional differences. For 0 < d < - ½ < ½ the resulting fractional ARIMA processes are stationary. For 0 < d < ½ , the correlations are not summable. The parameter d can be estimated, for instance by maximum likelihood. Unfortunately, estimation methods known so far have been restricted to the stationary range - ½ < d < ½. In this paper, we show how any real d > -½ can be estimated by an approximate maximum likelihood method. We thus obtain a unified approach to fitting traditional Box-Jenkins ARIMA processes as well as stationary and non-stationary fractional ARIMA processes. A confidence interval for d can be given. Tests, such as for unit roots in the autoregressive parameter or for stationarity, follow immediately. The resulting confidence intervals for the ARIMA parameters take into account the additional uncertainty due to estimation of d. A simple algorithm for calculating the estimate of d and the ARMA parameters is given. Simulations and two data examples illustrate the results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERAN, Jan, 1995. Maximum likelihood estimation of the differencing parameter for invertible short and long memory Autoregressive Integrated Moving Average models. In: Journal of the Royal Statistical Society / B. 1995, 57(4), pp. 659-672BibTex
@article{Beran1995Maxim-18828, year={1995}, title={Maximum likelihood estimation of the differencing parameter for invertible short and long memory Autoregressive Integrated Moving Average models}, number={4}, volume={57}, journal={Journal of the Royal Statistical Society / B}, pages={659--672}, author={Beran, Jan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18828"> <dc:contributor>Beran, Jan</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>1995</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>Publ. in: Journal of the Royal Statistical Society / B ; 57 (1995), 4. - S. 659-672</dcterms:bibliographicCitation> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-22T07:22:21Z</dc:date> <dc:creator>Beran, Jan</dc:creator> <dcterms:title>Maximum likelihood estimation of the differencing parameter for invertible short and long memory Autoregressive Integrated Moving Average models</dcterms:title> <dcterms:abstract xml:lang="eng">In practical applications of Box-Jenkins autoregressive integrated moving average (ARIMA) models, the number of times that the observed time series must be differenced to achieve approximate stationarity is usually determined by careful, but mostly informal, analysis of the differenced series. For many time series, some differencing seems appropriate, but taking the first or the second difference may be too strong. As an alternative, Hosking, and Granger and Joyeux proposed the use of fractional differences. For 0 < d < - ½ < ½ the resulting fractional ARIMA processes are stationary. For 0 < d < ½ , the correlations are not summable. The parameter d can be estimated, for instance by maximum likelihood. Unfortunately, estimation methods known so far have been restricted to the stationary range - ½ < d < ½. In this paper, we show how any real d > -½ can be estimated by an approximate maximum likelihood method. We thus obtain a unified approach to fitting traditional Box-Jenkins ARIMA processes as well as stationary and non-stationary fractional ARIMA processes. A confidence interval for d can be given. Tests, such as for unit roots in the autoregressive parameter or for stationarity, follow immediately. The resulting confidence intervals for the ARIMA parameters take into account the additional uncertainty due to estimation of d. A simple algorithm for calculating the estimate of d and the ARMA parameters is given. Simulations and two data examples illustrate the results.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-22T07:22:21Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18828"/> </rdf:Description> </rdf:RDF>