Maximum likelihood estimation of the differencing parameter for invertible short and long memory Autoregressive Integrated Moving Average models

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
1995
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of the Royal Statistical Society / B. 1995, 57(4), pp. 659-672
Zusammenfassung

In practical applications of Box-Jenkins autoregressive integrated moving average (ARIMA) models, the number of times that the observed time series must be differenced to achieve approximate stationarity is usually determined by careful, but mostly informal, analysis of the differenced series. For many time series, some differencing seems appropriate, but taking the first or the second difference may be too strong. As an alternative, Hosking, and Granger and Joyeux proposed the use of fractional differences. For 0 < d < - ½ < ½ the resulting fractional ARIMA processes are stationary. For 0 < d < ½ , the correlations are not summable. The parameter d can be estimated, for instance by maximum likelihood. Unfortunately, estimation methods known so far have been restricted to the stationary range - ½ < d < ½. In this paper, we show how any real d > -½ can be estimated by an approximate maximum likelihood method. We thus obtain a unified approach to fitting traditional Box-Jenkins ARIMA processes as well as stationary and non-stationary fractional ARIMA processes. A confidence interval for d can be given. Tests, such as for unit roots in the autoregressive parameter or for stationarity, follow immediately. The resulting confidence intervals for the ARIMA parameters take into account the additional uncertainty due to estimation of d. A simple algorithm for calculating the estimate of d and the ARMA parameters is given. Simulations and two data examples illustrate the results.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Autoregression, Box-Jenkins ARIMA, differencing, FARIMA, Long-range dependence, Maximum Likelihood estimation, overdifferencing
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BERAN, Jan, 1995. Maximum likelihood estimation of the differencing parameter for invertible short and long memory Autoregressive Integrated Moving Average models. In: Journal of the Royal Statistical Society / B. 1995, 57(4), pp. 659-672
BibTex
@article{Beran1995Maxim-18828,
  year={1995},
  title={Maximum likelihood estimation of the differencing parameter for invertible short and long memory Autoregressive Integrated Moving Average models},
  number={4},
  volume={57},
  journal={Journal of the Royal Statistical Society / B},
  pages={659--672},
  author={Beran, Jan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18828">
    <dc:contributor>Beran, Jan</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>1995</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:bibliographicCitation>Publ. in: Journal of the Royal Statistical Society / B ; 57 (1995), 4. - S. 659-672</dcterms:bibliographicCitation>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-22T07:22:21Z</dc:date>
    <dc:creator>Beran, Jan</dc:creator>
    <dcterms:title>Maximum likelihood estimation of the differencing parameter for invertible short and long memory Autoregressive Integrated Moving Average models</dcterms:title>
    <dcterms:abstract xml:lang="eng">In practical applications of Box-Jenkins autoregressive integrated moving average (ARIMA) models, the number of times that the observed time series must be differenced to achieve approximate stationarity is usually determined by careful, but mostly informal, analysis of the differenced series. For many time series, some differencing seems appropriate, but taking the first or the second difference may be too strong. As an alternative, Hosking, and Granger and Joyeux proposed the use of fractional differences. For 0 &lt; d &lt; - ½ &lt; ½ the resulting fractional ARIMA processes are stationary. For 0 &lt; d &lt; ½ , the correlations are not summable. The parameter d can be estimated, for instance by maximum likelihood. Unfortunately, estimation methods known so far have been restricted to the stationary range - ½ &lt; d &lt; ½. In this paper, we show how any real d &gt; -½ can be estimated by an approximate maximum likelihood method. We thus obtain a unified approach to fitting traditional Box-Jenkins ARIMA processes as well as stationary and non-stationary fractional ARIMA processes. A confidence interval for d can be given. Tests, such as for unit roots in the autoregressive parameter or for stationarity, follow immediately. The resulting confidence intervals for the ARIMA parameters take into account the additional uncertainty due to estimation of d. A simple algorithm for calculating the estimate of d and the ARMA parameters is given. Simulations and two data examples illustrate the results.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-22T07:22:21Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18828"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen