On a class of M-estimators for Gaussian long-memory models

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

BERAN, Jan, 1994. On a class of M-estimators for Gaussian long-memory models. In: Biometrika. 81(4), pp. 755-766. ISSN 0006-3444. Available under: doi: 10.1093/biomet/81.4.755

@article{Beran1994class-18822, title={On a class of M-estimators for Gaussian long-memory models}, year={1994}, doi={10.1093/biomet/81.4.755}, number={4}, volume={81}, issn={0006-3444}, journal={Biometrika}, pages={755--766}, author={Beran, Jan} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/18822"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-22T07:11:28Z</dc:date> <dcterms:bibliographicCitation>Publ. in: Biometrika ; 81 (1994), 4. - S. 755-766</dcterms:bibliographicCitation> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:issued>1994</dcterms:issued> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18822"/> <dcterms:title>On a class of M-estimators for Gaussian long-memory models</dcterms:title> <dc:creator>Beran, Jan</dc:creator> <dcterms:abstract xml:lang="eng">We consider estimation for parametric stationary Gaussian models with long memory. The spectral density f(x; θ) is assumed to be characterised by a vector θ = (θ1, θ2, θ3,…, θm) such that θ2 = H ε (½, 1) and f(x; θ) is proportional to x1−2H as x tends to zero. An approximate maximum likelihood estimator based on the autoregressive representation of the process is proposed. Its asymptotic distribution is derived. More generally, the approach leads to a class of M-estimators for which a central limit theorem holds. By choosing an appropriate ψ-function, robustness against additive outliers can be achieved, while keeping high efficiency under the ideal model. This is illustrated by a small simulation study. A simple algorithm and an explicit formula for the efficiency, and thus for choosing an appropriate tuning parameter, are given for Hampel's redescending ψ-function.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-22T07:11:28Z</dcterms:available> <dc:language>eng</dc:language> <dc:rights>deposit-license</dc:rights> <dc:contributor>Beran, Jan</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto