Slowly decaying correlations, testing normality, nuisance parameters

No Thumbnail Available
Files
There are no files associated with this item.
Date
1991
Authors
Ghosh, Sucharita
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Journal of the American Statistical Association ; 86 (1991), 415. - pp. 785-791
Abstract
Slowly decaying serial correlations can cause goodness-of-fit tests for a distribution to reject the null hypothesis with probability tending to one with increasing sample size. When the null distribution is completely specified (simple null hypothesis) the problem is actually worse than for the case where there are nuisance parameters to be estimated (composite null hypothesis). In particular, we consider here testing normality. We discuss limit theorems and propose correction terms to be incorporated in certain goodness-of-fit statistics to improve the rates of convergence for the simple hypothesis case. We show how the problem is solved automatically for the composite null hypothesis case when the nuisance parameters are estimated from the data. Simulations illustrate the results.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Fractional Gaussian Noise,Goodness-of-fit test,Hermite polynomial,Long-range dependence,Unsuspected correlations
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BERAN, Jan, Sucharita GHOSH, 1991. Slowly decaying correlations, testing normality, nuisance parameters. In: Journal of the American Statistical Association. 86(415), pp. 785-791. Available under: doi: 10.1080/01621459.1991.10475110
BibTex
@article{Beran1991Slowl-18813,
  year={1991},
  doi={10.1080/01621459.1991.10475110},
  title={Slowly decaying correlations, testing normality, nuisance parameters},
  number={415},
  volume={86},
  journal={Journal of the American Statistical Association},
  pages={785--791},
  author={Beran, Jan and Ghosh, Sucharita}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18813">
    <dcterms:title>Slowly decaying correlations, testing normality, nuisance parameters</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Slowly decaying serial correlations can cause goodness-of-fit tests for a distribution to reject the null hypothesis with probability tending to one with increasing sample size. When the null distribution is completely specified (simple null hypothesis) the problem is actually worse than for the case where there are nuisance parameters to be estimated (composite null hypothesis). In particular, we consider here testing normality. We discuss limit theorems and propose correction terms to be incorporated in certain goodness-of-fit statistics to improve the rates of convergence for the simple hypothesis case. We show how the problem is solved automatically for the composite null hypothesis case when the nuisance parameters are estimated from the data. Simulations illustrate the results.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-20T14:47:58Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-20T14:47:58Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18813"/>
    <dcterms:bibliographicCitation>Journal of the American Statistical Association ; 86 (1991), 415. - S. 785-791</dcterms:bibliographicCitation>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>1991</dcterms:issued>
    <dc:creator>Ghosh, Sucharita</dc:creator>
    <dc:contributor>Ghosh, Sucharita</dc:contributor>
    <dc:creator>Beran, Jan</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed