Multiple Discriminant Analysis of SPECT Data for Alzheimer’s Disease, Frontotemporal Dementia and Asymptomatic Controls
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Multiple discriminant analysis (MDA) is a generalization of the Fisher discriminant analysis (FDA) and makes it possible to discriminate more than two classes by projecting the data onto a subspace. In this work, it was applied to technetium- 99methylcysteinatedimer (99mTc-ECD) SPECT datasets of 10 Alzheimer’s disease (AD) patients, 11 frontotemporal dementia (FTD) patients and 11 asymptomatic controls (CTR). Principal component analysis (PCA) was used for dimensionality reduction, followed by projection of the data onto a discrimination plane via MDA. In order to separate the different groups, linear boundaries were calculated by applying FDA to two classes at a time (linear machine). By executing the F-test for different numbers of principal components and examining the corresponding classification accuracy, an optimal discrimination plane based on the first three principal components was determined. In order to further assess the method, another dataset comprising patients with early-onset AD and FTD (beginning or suspected disease) was projected by the same method onto this discrimination plane, resulting in a correct classification for most cases. The successful iscrimination of another dataset on the same plane indicates that the model is well suited to account for
disease-specific characteristics within the classes, even for patients with early-onset AD and FTD.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STÜHLER, Elisabeth, Günther PLATSCH, Markus WEIH, Johannes KORNHUBER, Torsten KUWERT, Dorit MERHOF, 2011. Multiple Discriminant Analysis of SPECT Data for Alzheimer’s Disease, Frontotemporal Dementia and Asymptomatic Controls. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (2011 NSS/MIC). Valencia, Spain, 23. Okt. 2011 - 29. Okt. 2011. In: 2011 IEEE Nuclear Science Symposium Conference Record. IEEE, 2011, pp. 4398-4401. ISBN 978-1-4673-0118-3. Available under: doi: 10.1109/NSSMIC.2011.6153848BibTex
@inproceedings{Stuhler2011-10Multi-18292, year={2011}, doi={10.1109/NSSMIC.2011.6153848}, title={Multiple Discriminant Analysis of SPECT Data for Alzheimer’s Disease, Frontotemporal Dementia and Asymptomatic Controls}, isbn={978-1-4673-0118-3}, publisher={IEEE}, booktitle={2011 IEEE Nuclear Science Symposium Conference Record}, pages={4398--4401}, author={Stühler, Elisabeth and Platsch, Günther and Weih, Markus and Kornhuber, Johannes and Kuwert, Torsten and Merhof, Dorit} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18292"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18292/2/St%c3%bchler%20et.al_2011_MDA%20of%20SPECT%20data%20for%20AD%2c%20FTD%20and%20asymptomatic%20CTR.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Platsch, Günther</dc:creator> <dc:creator>Stühler, Elisabeth</dc:creator> <dc:creator>Merhof, Dorit</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-06-21T07:57:27Z</dc:date> <dcterms:issued>2011-10</dcterms:issued> <dc:contributor>Kornhuber, Johannes</dc:contributor> <dc:creator>Weih, Markus</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18292"/> <dcterms:title>Multiple Discriminant Analysis of SPECT Data for Alzheimer’s Disease, Frontotemporal Dementia and Asymptomatic Controls</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Kuwert, Torsten</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Merhof, Dorit</dc:contributor> <dc:contributor>Weih, Markus</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Kornhuber, Johannes</dc:creator> <dcterms:bibliographicCitation>First publ. in: 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference : (NSS/MIC 2011); Valencia, Spain, 23 - 29 October 2011; [and 18th International Workshop on Room-Temperature Semiconductor X-ray and Gamma-ray Detectors; Workshop on Helium-3 Alternatives for Neutron Detection] / Nuclear and Plasma Sciences Society. - IEEE , Piscataway, NJ ; 2011. - S. 4398-4401</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dc:contributor>Platsch, Günther</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-06-21T07:57:27Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18292/2/St%c3%bchler%20et.al_2011_MDA%20of%20SPECT%20data%20for%20AD%2c%20FTD%20and%20asymptomatic%20CTR.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Stühler, Elisabeth</dc:contributor> <dc:contributor>Kuwert, Torsten</dc:contributor> <dcterms:abstract xml:lang="eng">Multiple discriminant analysis (MDA) is a generalization of the Fisher discriminant analysis (FDA) and makes it possible to discriminate more than two classes by projecting the data onto a subspace. In this work, it was applied to technetium- 99methylcysteinatedimer (99mTc-ECD) SPECT datasets of 10 Alzheimer’s disease (AD) patients, 11 frontotemporal dementia (FTD) patients and 11 asymptomatic controls (CTR). Principal component analysis (PCA) was used for dimensionality reduction, followed by projection of the data onto a discrimination plane via MDA. In order to separate the different groups, linear boundaries were calculated by applying FDA to two classes at a time (linear machine). By executing the F-test for different numbers of principal components and examining the corresponding classification accuracy, an optimal discrimination plane based on the first three principal components was determined. In order to further assess the method, another dataset comprising patients with early-onset AD and FTD (beginning or suspected disease) was projected by the same method onto this discrimination plane, resulting in a correct classification for most cases. The successful iscrimination of another dataset on the same plane indicates that the model is well suited to account for<br />disease-specific characteristics within the classes, even for patients with early-onset AD and FTD.</dcterms:abstract> </rdf:Description> </rdf:RDF>