KOPS - Das Institutionelle Repositorium der Universität Konstanz

Stability of large- and small-amplitude solitary waves in the generalized Korteweg-de Vries and Euler–Korteweg/Boussinesq equations

Stability of large- and small-amplitude solitary waves in the generalized Korteweg-de Vries and Euler–Korteweg/Boussinesq equations

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

HÖWING, Johannes, 2011. Stability of large- and small-amplitude solitary waves in the generalized Korteweg-de Vries and Euler–Korteweg/Boussinesq equations. In: Journal of Differential Equations. 251(9), pp. 2515-2533. ISSN 0022-0396

@article{Howing2011Stabi-18225, title={Stability of large- and small-amplitude solitary waves in the generalized Korteweg-de Vries and Euler–Korteweg/Boussinesq equations}, year={2011}, doi={10.1016/j.jde.2011.06.016}, number={9}, volume={251}, issn={0022-0396}, journal={Journal of Differential Equations}, pages={2515--2533}, author={Höwing, Johannes} }

2012-02-02T07:40:30Z 2012-02-02T07:40:30Z Stability of large- and small-amplitude solitary waves in the generalized Korteweg-de Vries and Euler–Korteweg/Boussinesq equations Publ. in: Journal of Differential Equations ; 251 (2011), 9. - S. 2515-2533 This paper establishes that solitary waves for the generalized Korteweg–de Vries equation and for the generalized Boussinesq equation are stable if the flux function p satisfies p″>0 and p‴⩽0.<br />While p″>0 alone suffices for the stability of waves of sufficiently small amplitude, obvious examples show that p‴⩽0 cannot be omitted in the general case. 2011 Höwing, Johannes Höwing, Johannes eng deposit-license

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto