Forecasting Euro-Area Variables with German Pre-EMU Data


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

BRÜGGEMANN, Ralf, Helmut LÜTKEPOHL, Massimiliano MARCELLINO, 2008. Forecasting Euro-Area Variables with German Pre-EMU Data. In: Journal of Forecasting. 27(6), pp. 465-481. Available under: doi: 10.1002/for.1064

@article{Bruggemann2008Forec-1811, title={Forecasting Euro-Area Variables with German Pre-EMU Data}, year={2008}, doi={10.1002/for.1064}, number={6}, volume={27}, journal={Journal of Forecasting}, pages={465--481}, author={Brüggemann, Ralf and Lütkepohl, Helmut and Marcellino, Massimiliano} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:creator>Lütkepohl, Helmut</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Marcellino, Massimiliano</dc:creator> <dc:contributor>Brüggemann, Ralf</dc:contributor> <dc:contributor>Lütkepohl, Helmut</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:issued>2008</dcterms:issued> <dc:contributor>Marcellino, Massimiliano</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="">2011-03-23T09:36:03Z</dc:date> <dcterms:title>Forecasting Euro-Area Variables with German Pre-EMU Data</dcterms:title> <bibo:uri rdf:resource=""/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">It is investigated whether euro area variables can be forecast better based on synthetic time series for the pre-euro period or by using just data from Germany for the pre-euro period. Our forecast comparison is based on quarterly data for the period 1970Q1-2003Q4 for 10 macroeconomic variables. The years 2000-2003 are used as forecasting period. A range of different univariate forecasting methods is applied. Some of them are based on linear autoregressive models and we also use some nonlinear or time-varying coefficient models. It turns out that most variables which have a similar level for Germany and the euro area such as prices can be better predicted based on German data, while aggregated European data are preferable for forecasting variables which need considerable adjustments in their levels when joining German and European Monetary Union (EMU) data. These results suggest that for variables which have a similar level for Germany and the euro area it may be reasonable to consider the German pre-EMU data for studying economic problems in the euro area.</dcterms:abstract> <dcterms:available rdf:datatype="">2011-03-23T09:36:03Z</dcterms:available> <dcterms:bibliographicCitation>Publ. in: Journal of Forecasting 27 (2008), 6, 465-481</dcterms:bibliographicCitation> <dc:creator>Brüggemann, Ralf</dc:creator> <dcterms:rights rdf:resource=""/> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto