Farthest-point optimized point sets with maximized minimum distance

Vorschaubild
Datum
2011
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
Projekt
Nicht-periodische Parkettierungen für die Computergraphik
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Erschienen in
Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics - HPG '11. - New York, New York, USA : ACM Press, 2011. - S. 135-142. - ISBN 978-1-4503-0896-0
Zusammenfassung
Efficient sampling often relies on irregular point sets that uniformly cover the sample space. We present a flexible and simple optimization strategy for such point sets. It is based on the idea of increasing the mutual distances by successively moving each point to the “farthest point,” i.e., the location that has the maximum distance from the rest of the point set. We present two iterative algorithms based on this strategy. The first is our main algorithm which distributes points in the plane. Our experimental results show that the resulting distributions have almost optimal blue noise properties and are highly suitable for image plane sampling. The second is a variant oft he main algorithm that partitions any point set into equally sized subsets, each with large mutual distances; the resulting partitionings yield improved results in more general integration problems such as those occurring in physically based rendering.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
ACM SIGGRAPH Symposium on High Performance Graphics - HPG '11, 5. Aug. 2011 - 7. Aug. 2011, Vancouver, British Columbia, Canada
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690SCHLÖMER, Thomas, Daniel HECK, Oliver DEUSSEN, 2011. Farthest-point optimized point sets with maximized minimum distance. ACM SIGGRAPH Symposium on High Performance Graphics - HPG '11. Vancouver, British Columbia, Canada, 5. Aug. 2011 - 7. Aug. 2011. In: Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics - HPG '11. New York, New York, USA:ACM Press, pp. 135-142. ISBN 978-1-4503-0896-0. Available under: doi: 10.1145/2018323.2018345
BibTex
@inproceedings{Schlomer2011Farth-17724,
  year={2011},
  doi={10.1145/2018323.2018345},
  title={Farthest-point optimized point sets with maximized minimum distance},
  isbn={978-1-4503-0896-0},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics - HPG '11},
  pages={135--142},
  author={Schlömer, Thomas and Heck, Daniel and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17724">
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Schlömer, Thomas</dc:contributor>
    <dc:creator>Heck, Daniel</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-02T09:10:21Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Efficient sampling often relies on irregular point sets that uniformly cover the sample space. We present a flexible and simple optimization strategy for such point sets. It is based on the idea of increasing the mutual distances by successively moving each point to the “farthest point,” i.e., the location that has the maximum distance from the rest of the point set. We present two iterative algorithms based on this strategy. The first is our main algorithm which distributes points in the plane. Our experimental results show that the resulting distributions have almost optimal blue noise properties and are highly suitable for image plane sampling. The second is a variant oft he main algorithm that partitions any point set into equally sized subsets, each with large mutual distances; the resulting partitionings yield improved results in more general integration problems such as those occurring in physically based rendering.</dcterms:abstract>
    <dc:contributor>Heck, Daniel</dc:contributor>
    <dcterms:issued>2011</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17724"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17724/1/Deussen%20etal.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schlömer, Thomas</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics : HPG '11 / Stephen N. Spencer (ed.). - New York : ACM, 2011. - pp. 135-142. - ISBN 978-1-4503-0896-0</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17724/1/Deussen%20etal.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Farthest-point optimized point sets with maximized minimum distance</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-02T09:10:21Z</dc:date>
    <dc:contributor>Deussen, Oliver</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet