Trophic interactions and abiotic forcing in the aquatic ecosystems : a modeling approach
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Planktonic food webs are easy to monitor and manipulate, thus offer a wide array of opportunities for deriving general ecological and evolutionary principles. Not least, for predicting and managing the consequences of the increasing stresses on aquatic ecosystems due to anthropogenic activity, we need a better understanding of their ecological dynamics more than ever, in the face of growing threats such as perturbation of biogeochemical cycles and global warming. In this study, I focused on various aspects of plankton dynamics and the physical environment influencing them. In chapter 1, anomalous limnological conditions that occurred after an extremely warm winter were elaborated for gaining insights into the shape of things to come in a warmer future. In chapter 2, the regulation of phytoplankton growth by top-down and bottom-up factors and their variation over inter-decadal, inter-annual and seasonal scales were inspected. In chapter 3, the focus was on ciliates, where the performance of different model formulations regarding their loss terms were evaluated, based on extensive phytoplankton and ciliate data sets collected from Lake Constance. In chapter 4, the influence of cell size on algal competitive abilities in an incompletely mixed water column where nutrients and light are found in opposing gradients was analyzed.
The simulations with the hydro-dynamical model forced by artificially sequenced meteorological conditions revealed that the occurrence of relatively shallow mixed layer depth during the 2006/07 winter was brought about by the collective work of two winters: anomalously high air temperatures starting from 2006 November resulted in a lack of cooling, hence, insufficient densification of surface waters to replace the denser water at the deep layers, which was a result of cold air temperatures of 2005/06 winter. Therefore the limnological parameters that primarily depend on mixing dynamics such as phosphorus concentrations at surface and the timing of phytoplankton bloom are likely to overestimate the future conditions in which such warm winters are anticipated to be the norm. Contrastingly, the temperature dependent parameters such as timing of the emergence of Daphnia are shown to be potentially underestimating the future conditions, as the simulations forced with the meteorology of warm 2006/07 revealed that, it takes almost a decade in Lake Constance for the temperature profiles to reach an equilibrium annual cycle.
In order to improve the understanding on the regulation of the phytoplankton and ciliate populations, a vertically resolved phytoplankton-ciliate model was used, which was driven by hydro-dynamically calculated temperature and turbulent diffusivity profiles and field measurements of phosphorus and various other zooplankton groups Across a gradient of trophic states encompassing meso\eutrophic to oligotrophic conditions reflecting three decades of reduced phosphorus loading in Lake Constance, the relative importance of bottom-up regulation of spring phytoplankton growth gradually and non-linearly exceeded that of top-down regulation. While the increase in the absolute magnitude of bottom-up limitation played a major role in this alteration of the predominance of regulation mechanisms, the decrease in the absolute magnitude of top-down regulation as a result of decreasing ciliate biomasses also had a contribution. An understanding of the seasonal scale variations in the strength of top-down and bottom-up factors were shown to be essential for understanding the variations on a long-term scale. While the decline in ciliate abundances with decreasing phytoplankton concentrations suggest that the regulation of ciliate population is predominantly bottom-up, the detailed investigation of the performance of alternative model formulations for simulating the ciliate dynamics indicates that some self-limitation process keep their population in certain bounds and prevent them from fully exploiting their algal resources. With a density dependent mortality rate, it was possible to realistically simulate the ciliate biomasses in a wide range of environmental settings, suggesting that this formulation offers a simple solution for inclusion of a microzooplankton compartment to the ecosystem models.
Extensive simulations with the vertically resolved Droop-model of phytoplankton growth revealed a novel mechanism of algal competition. When the competing species differ with respect to their nutrient storage abilities, for instance, due to differences in their typical cell sizes, storage advantages can override other disadvantages such as lower growth rates or lower nutrient affinities, if the upward transport rate of nutrient-rich cells to the photic zone is sufficiently high. The supply rate of nutrient-rich cells to the surface do not only depend on the mixing intensities throughout the water column but also on other system parameters, such as background turbidity and nutrient concentrations at the bottom of the water column, which can effect the vertical distribution of light and nutrient availabilities. Moreover, the spatio-temporal heterogeneities in the mixing intensities were shown to introduce further complexities, which need to be investigated in future.
Zusammenfassung in einer weiteren Sprache
Planktische Nahrungsnetze sind einfach zu untersuchen und zu manipulieren. Aus diesem Grund bieten sie eine große Auswahl von Möglichkeiten um allgemeine ökologische und evolutionäre Prinzipien zu beobachten. Nicht zuletzt, um die Konsequenzen des ansteigenden Stresses durch anthropogene Aktivitäten auf aquatische Ökosysteme vorhersagen und zu managen brauchen wir ein besseres Verständnis ihrer ökologischen Dynamik. In einer Zeit der wachsenden Bedrohung durch Störungen des biogeochemischen Kreislaufes und der globalen Erwärmung gilt dies mehr denn je. In dieser Studie beschäftigte ich mich mit verschiedenen Aspekten der Plaktondynamik und der sie beeinflussenden physikalischen Umweltbedingungen. In Kapitel 1 werden ungewöhnliche limnologische Bedingungen, welche nach einem extrem warmen Winter auftauchten untersucht, um so Einblick in die zu erwartenden Veränderungen durch Klimaerwärmung in der Zukunft zu erhalten. In Kapitel 2 wurde die Steuerung des Phytoplanktonwachstums durch Top-down und Bottom-up Effekte und ihre Änderungen zwischen Jahrzehnten, Jahren und saisonal untersucht. In Kapitel 3 lag der Fokus auf Ciliaten. Basierend auf extensiven Phytoplankton- und Ciliaten-Datensätzen aus dem Bodensee wurde das Ergebnis unterschiedlicher Modell-Schemata hinsichtlich ihrer Verlustrate untersucht. In Kapitel 4 wurde der Einfluss der Zellgröße auf die Konkurrenzfähigkeit der Algen in einer unvollständig gemischten Wassersäule mit umgekehrten Konzentrationsgradienten von Nährstoffen und Licht analysiert.
Die Simulationen des hydrodynamischen Models mit künstlich erzeugten Reihenfolgen der meteorologischen Bedingungen zeigte, dass das Auftreten von relativ flachen Mischungstiefen während des Winters 2006/07 durch das Zusammenspiel zweier Winter verursacht wurde. Ungewöhnlich hohe Lufttemperaturen seit dem November 2006 führten zu unzureichender Abkühlung und Verdichtung des Oberflächenwassers, infolgedessen die ausbleibende Verdrängung durch dichteres Wasser aus tieferen Schichten, erzeugt durch kalte Lufttemperaturen im Winter 2005/06. Folglich ist es wahrscheinlich, dass limnologische Parameter wie Oberflächen-Phosphorkonzentration und Zeitpunkt der Phytoplanktonblüte, welche hauptsächlich von der Mischungsdynamik abhängen, Zukunftsszenarios in denen warme Winter erwartet werden, überschätzen. Im Gegensatz dazu ist es wahrscheinlich, dass temperaturabhängige Parameter, wie das Emergenz von Daphnia, zu einer Unterschätzung der zukünftigen meteorologischen Verhältnisse führen. Dies lässt sich aus Simulationen schließen, welche zeigen dass, wenn man die Meteorologie der warmen Jahre 2006/07 voraussetzt, es im Bodensee fast ein ganzes Jahrzehnt dauern würde, um Temperaturprofile in einen gleich bleibenden Jahresrhythmus zu bringen.
Um die Steuerungsmechanismen der Phytoplankton und Ciliaten Populationsdynamik besser zu verstehen, wurde ein durch hydrodynamisch berechnete Temperaturen, turbulente Diffusionsprofile und in vivo gemessene Phosphor- und Zooplanktondaten gesteuertes vertikal aufgelöstes Phytoplankton-Ciliaten-Model verwendet. Drei Jahrzehnte mit reduzierter Phosphorlast im Bodensee führten zu einem Trophiegradienten von meso-/eutroph zu oligotroph und dazu, dass der relative Bedeutung der Bottom-up Kontrolle des Phytoplanktonwachstums im Frühjahr schrittweise und nichtlinear den der Top-down Kontrolle überschritt. Während die Zunahme des absoluten Ausmaßes der Limitation durch Bottom-up Faktoren eine große Rolle bei der Änderung der Bedeutung der Regulationsmechanismen spielt, hat die Abnahme des absoluten Ausmaßes der Limitation durch Top-Down Faktoren, ausgelöst durch Abnahme der Ciliatenbiomasse, ebenfalls einen Einfluss. Es konnte gezeigt werden, dass das Verständnis von Variationen der Stärke von Top-down und Bottom-up Faktoren auf saisonaler Skala entscheidend ist um auch langfristige Variationen zu verstehen. Während die Abnahme der Ciliatenabundanz bei ansteigender Phytoplanktonkonzentration darauf hindeutet, dass die Ciliatenpopulation vor allem durch Bottom-up kontrolliert wird, zeigen detaillierte Untersuchungen der Ergebnisse verschiedener Modellierungen der Ciliatendynamik, dass Prozesse der Eigenlimitierung die Population in bestimmten Grenzen halten und so die vollständige Ausnutzung der Algenressourcen verhindert wird. Mit Hilfe einer dichteabhängigen Sterberate war es möglich eine realistische Simulation der Ciliatenbiomasse unter einem breiten Spektrum verschiedener Umweltbedingungen durchzuführen und so zu zeigen, dass diese Herangehensweise eine einfache Möglichkeit bietet Mikrozooplankton-Kompartimente in Ökosystemmodelle zu integrieren. Umfangreiche Simulationen des Phytoplantonwachstums mit dem vertikal aufgelösten Droop-Model, zeigen neue Ressourcenkonkurrenz-Mechanismen. Unterscheiden sich konkurrierende Arten in ihrer Fähigkeit Nährstoffe zu speichern, z.B. aufgrund unterschiedlicher Zellgröße, kann der Speichervorteil andere Nachteile, wie eine geringere Wachstumsrate oder eine geringere Nährstoffaffinität aufheben, wenn die Rate, ab der nährstoffreiche Zellen in die photische Zone transportiert werden hoch genug ist. Die Transportrate der nährstoffreichen Zellen zur Oberfläche hängt nicht nur von der Mischungsintensität innerhalb der Wassersäule ab, sondern auch von anderen Systemparametern wie Hintergrund-Trübung und Nährstoffkonzentration am Boden der Wassersäule, welche die vertikale Verteilung von Licht- und Nährstoffverfügbarkeit beeinflussen können. Wir zeigten außerdem, dass räumliche und zeitliche Heterogenität der Mischungsintensität weitere komplexe Fragen aufwerfen, welche in zukünftigen Arbeiten weiter untersucht werden sollten.
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KERIMOGLU, Onur, 2011. Trophic interactions and abiotic forcing in the aquatic ecosystems : a modeling approach [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Kerimoglu2011Troph-16454, year={2011}, title={Trophic interactions and abiotic forcing in the aquatic ecosystems : a modeling approach}, author={Kerimoglu, Onur}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/16454"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-12T22:25:04Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16454/1/Kerimoglu_2011_PhD_Dissertation.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-08T12:22:16Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/16454"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/16454/1/Kerimoglu_2011_PhD_Dissertation.pdf"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Planktonic food webs are easy to monitor and manipulate, thus offer a wide array of opportunities for deriving general ecological and evolutionary principles. Not least, for predicting and managing the consequences of the increasing stresses on aquatic ecosystems due to anthropogenic activity, we need a better understanding of their ecological dynamics more than ever, in the face of growing threats such as perturbation of biogeochemical cycles and global warming. In this study, I focused on various aspects of plankton dynamics and the physical environment influencing them. In chapter 1, anomalous limnological conditions that occurred after an extremely warm winter were elaborated for gaining insights into the shape of things to come in a warmer future. In chapter 2, the regulation of phytoplankton growth by top-down and bottom-up factors and their variation over inter-decadal, inter-annual and seasonal scales were inspected. In chapter 3, the focus was on ciliates, where the performance of different model formulations regarding their loss terms were evaluated, based on extensive phytoplankton and ciliate data sets collected from Lake Constance. In chapter 4, the influence of cell size on algal competitive abilities in an incompletely mixed water column where nutrients and light are found in opposing gradients was analyzed.<br /><br />The simulations with the hydro-dynamical model forced by artificially sequenced meteorological conditions revealed that the occurrence of relatively shallow mixed layer depth during the 2006/07 winter was brought about by the collective work of two winters: anomalously high air temperatures starting from 2006 November resulted in a lack of cooling, hence, insufficient densification of surface waters to replace the denser water at the deep layers, which was a result of cold air temperatures of 2005/06 winter. Therefore the limnological parameters that primarily depend on mixing dynamics such as phosphorus concentrations at surface and the timing of phytoplankton bloom are likely to overestimate the future conditions in which such warm winters are anticipated to be the norm. Contrastingly, the temperature dependent parameters such as timing of the emergence of Daphnia are shown to be potentially underestimating the future conditions, as the simulations forced with the meteorology of warm 2006/07 revealed that, it takes almost a decade in Lake Constance for the temperature profiles to reach an equilibrium annual cycle.<br /><br />In order to improve the understanding on the regulation of the phytoplankton and ciliate populations, a vertically resolved phytoplankton-ciliate model was used, which was driven by hydro-dynamically calculated temperature and turbulent diffusivity profiles and field measurements of phosphorus and various other zooplankton groups Across a gradient of trophic states encompassing meso\eutrophic to oligotrophic conditions reflecting three decades of reduced phosphorus loading in Lake Constance, the relative importance of bottom-up regulation of spring phytoplankton growth gradually and non-linearly exceeded that of top-down regulation. While the increase in the absolute magnitude of bottom-up limitation played a major role in this alteration of the predominance of regulation mechanisms, the decrease in the absolute magnitude of top-down regulation as a result of decreasing ciliate biomasses also had a contribution. An understanding of the seasonal scale variations in the strength of top-down and bottom-up factors were shown to be essential for understanding the variations on a long-term scale. While the decline in ciliate abundances with decreasing phytoplankton concentrations suggest that the regulation of ciliate population is predominantly bottom-up, the detailed investigation of the performance of alternative model formulations for simulating the ciliate dynamics indicates that some self-limitation process keep their population in certain bounds and prevent them from fully exploiting their algal resources. With a density dependent mortality rate, it was possible to realistically simulate the ciliate biomasses in a wide range of environmental settings, suggesting that this formulation offers a simple solution for inclusion of a microzooplankton compartment to the ecosystem models.<br /><br />Extensive simulations with the vertically resolved Droop-model of phytoplankton growth revealed a novel mechanism of algal competition. When the competing species differ with respect to their nutrient storage abilities, for instance, due to differences in their typical cell sizes, storage advantages can override other disadvantages such as lower growth rates or lower nutrient affinities, if the upward transport rate of nutrient-rich cells to the photic zone is sufficiently high. The supply rate of nutrient-rich cells to the surface do not only depend on the mixing intensities throughout the water column but also on other system parameters, such as background turbidity and nutrient concentrations at the bottom of the water column, which can effect the vertical distribution of light and nutrient availabilities. Moreover, the spatio-temporal heterogeneities in the mixing intensities were shown to introduce further complexities, which need to be investigated in future.</dcterms:abstract> <dc:contributor>Kerimoglu, Onur</dc:contributor> <dc:creator>Kerimoglu, Onur</dc:creator> <dcterms:issued>2011</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Trophic interactions and abiotic forcing in the aquatic ecosystems : a modeling approach</dcterms:title> </rdf:Description> </rdf:RDF>