An algorithmic approach to Schmüdgen's Positivstellensatz
An algorithmic approach to Schmüdgen's Positivstellensatz
Date
2002
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Journal of Pure and Applied Algebra ; 166 (2002), 3. - pp. 307-319. - ISSN 0022-4049
Abstract
We present a new proof of Schmüdgen's Positivstellensatz concerning the representation of polynomials ƒ ∈ ℝ[X1, ...,Xd] that are strictly positive on a compact basic closed semialgebraic subset S of ℝd. Like the two other existing proofs due to Schmüdgen and Wörmann, our proof also applies the classical Positivstellensatz to non-constructively produce an algebraic evidence for the compactness of S. But in sharp contrast to Schmüdgen and Wörmann we explicitly construct the desired representation of ƒ from this evidence. Thereby we make essential use of a theorem of Pólya concerning the representation of homogeneous polynomials that are strictly positive on an orthant of ℝd (minus the origin).
Summary in another language
Subject (DDC)
520 Astronomy
Keywords
effective Positivstellensatz,strictly positive polynomials
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
SCHWEIGHOFER, Markus, 2002. An algorithmic approach to Schmüdgen's Positivstellensatz. In: Journal of Pure and Applied Algebra. 166(3), pp. 307-319. ISSN 0022-4049. Available under: doi: 10.1016/S0022-4049(01)00041-XBibTex
@article{Schweighofer2002algor-15653, year={2002}, doi={10.1016/S0022-4049(01)00041-X}, title={An algorithmic approach to Schmüdgen's Positivstellensatz}, number={3}, volume={166}, issn={0022-4049}, journal={Journal of Pure and Applied Algebra}, pages={307--319}, author={Schweighofer, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15653"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-10T10:31:19Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Schweighofer, Markus</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15653/2/schmuedgen.pdf"/> <dcterms:abstract xml:lang="eng">We present a new proof of Schmüdgen's Positivstellensatz concerning the representation of polynomials ƒ ∈ ℝ[X<sub>1</sub>, ...,X<sub>d</sub>] that are strictly positive on a compact basic closed semialgebraic subset S of ℝ<sup>d</sup>. Like the two other existing proofs due to Schmüdgen and Wörmann, our proof also applies the classical Positivstellensatz to non-constructively produce an algebraic evidence for the compactness of S. But in sharp contrast to Schmüdgen and Wörmann we explicitly construct the desired representation of ƒ from this evidence. Thereby we make essential use of a theorem of Pólya concerning the representation of homogeneous polynomials that are strictly positive on an orthant of ℝ<sup>d</sup> (minus the origin).</dcterms:abstract> <dcterms:bibliographicCitation>First publ. in: Journal of Pure and Applied Algebra 166 (2002). - S. 307-319</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-10T10:31:19Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15653/2/schmuedgen.pdf"/> <dcterms:issued>2002</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15653"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:title>An algorithmic approach to Schmüdgen's Positivstellensatz</dcterms:title> <dc:contributor>Schweighofer, Markus</dc:contributor> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No