Pure states, nonnegative polynomials, and sums of squares

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:0b0c196ed05fdc51d56c8dec092579f6

BURGDORF, Sabine, Claus SCHEIDERER, Markus SCHWEIGHOFER, 2011. Pure states, nonnegative polynomials, and sums of squares

@unpublished{Burgdorf2011state-15615, title={Pure states, nonnegative polynomials, and sums of squares}, year={2011}, author={Burgdorf, Sabine and Scheiderer, Claus and Schweighofer, Markus} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/15615"> <dc:creator>Schweighofer, Markus</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-10T11:47:16Z</dcterms:available> <dc:rights>deposit-license</dc:rights> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In recent years, much work has been devoted to a systematic study of polynomial identities certifying strict or non-strict positivity of a polynomial on a basic closed semialgebraic set. The interest in such identities originates not least from their importance in polynomial optimization. The majority of the important results requires the archimedean condition, which implies that the semialgebraic set has to be compact. This paper introduces the technique of pure states into commutative algebra. We show that this technique allows an approach to most of the recent archimedean Stellensätze that is considerably easier and more conceptual than the previous proofs. In particular, we reprove and strengthen some of the most important results from the last years. In addition, we establish several such results which are entirely new. They are the first that allow the polynomial to have arbitrary, not necessarily discrete, zeros on the semialgebraic set.</dcterms:abstract> <dc:creator>Burgdorf, Sabine</dc:creator> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dcterms:title>Pure states, nonnegative polynomials, and sums of squares</dcterms:title> <dc:contributor>Scheiderer, Claus</dc:contributor> <dc:creator>Scheiderer, Claus</dc:creator> <dc:contributor>Burgdorf, Sabine</dc:contributor> <dc:contributor>Schweighofer, Markus</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-10T11:47:16Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15615"/> <dcterms:issued>2011</dcterms:issued> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

purestates.pdf 75

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto