Mining fault-tolerant item sets using subset size occurrence distributions


Dateien zu dieser Ressource

Prüfsumme: MD5:6a8167856a562a30e443f564aa3ce4b8

BORGELT, Christian, Tobias KÖTTER, 2011. Mining fault-tolerant item sets using subset size occurrence distributions. In: GAMA, João, ed., Elizabeth BRADLEY, ed., Jaakko HOLLMÉN, ed.. Advances in Intelligent Data Analysis X. Berlin, Heidelberg:Springer Berlin Heidelberg, pp. 43-54. ISBN 978-3-642-24799-6

@inproceedings{Borgelt2011Minin-15342, title={Mining fault-tolerant item sets using subset size occurrence distributions}, year={2011}, doi={10.1007/978-3-642-24800-9_7}, number={7014}, isbn={978-3-642-24799-6}, address={Berlin, Heidelberg}, publisher={Springer Berlin Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Advances in Intelligent Data Analysis X}, pages={43--54}, editor={Gama, João and Bradley, Elizabeth and Hollmén, Jaakko}, author={Borgelt, Christian and Kötter, Tobias} }

<rdf:RDF xmlns:rdf="" xmlns:bibo="" xmlns:dc="" xmlns:dcterms="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:date rdf:datatype="">2011-12-14T08:44:15Z</dc:date> <dc:creator>Kötter, Tobias</dc:creator> <dcterms:title>Mining fault-tolerant item sets using subset size occurrence distributions</dcterms:title> <dc:contributor>Kötter, Tobias</dc:contributor> <dcterms:rights rdf:resource=""/> <dc:contributor>Borgelt, Christian</dc:contributor> <dc:creator>Borgelt, Christian</dc:creator> <dcterms:issued>2011</dcterms:issued> <bibo:uri rdf:resource=""/> <dcterms:abstract xml:lang="eng">Mining fault-tolerant (or approximate or fuzzy) item sets means to allow for errors in the underlying transaction data in the sense that actually present items may not be recorded due to noise or measurement errors. In order to cope with such missing items, transactions that do not contain all items of a given set are still allowed to support it. However, either the number of missing items must be limited, or the transaction's contribution to the item set's support is reduced in proportion to the number of missing items, or both. In this paper we present an algorithm that efficiently computes the subset size occurrence distribution of item sets, evaluates this distribution to find fault-tolerant item sets, and exploits intermediate data to remove pseudo (or spurious) item sets. We demonstrate the usefulness of our algorithm by applying it to a concept detection task on the 2008/2009 Wikipedia Selection for schools.</dcterms:abstract> <dcterms:bibliographicCitation>First publ. in: 10th international symposium, IDA 2011, Porto, Portugal, October 29 - 31, 2011; proceedings / João Gama ... (eds.). - Berlin : Springer, 2011. - pp. 43-54. - (Lecture notes in computer science ; 7014). - ISBN 978-3-642-24799-6</dcterms:bibliographicCitation> <dc:rights>deposit-license</dc:rights> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="">2012-10-31T23:25:04Z</dcterms:available> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Borgelt_Final.pdf 113

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto