Sums of Hermitian squares as an approach to the BMV conjecture

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

BURGDORF, Sabine, 2011. Sums of Hermitian squares as an approach to the BMV conjecture. In: Linear and Multilinear Algebra. 59(1), pp. 1-9. ISSN 0308-1087. Available under: doi: 10.1080/03081080903119137

@article{Burgdorf2011Hermi-15309, title={Sums of Hermitian squares as an approach to the BMV conjecture}, year={2011}, doi={10.1080/03081080903119137}, number={1}, volume={59}, issn={0308-1087}, journal={Linear and Multilinear Algebra}, pages={1--9}, author={Burgdorf, Sabine} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/15309"> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-12-13T10:36:52Z</dc:date> <dcterms:title>Sums of Hermitian squares as an approach to the BMV conjecture</dcterms:title> <dc:creator>Burgdorf, Sabine</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15309"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Burgdorf, Sabine</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dcterms:issued>2011</dcterms:issued> <dcterms:abstract xml:lang="eng">Lieb and Seiringer stated in their reformulation of the Bessis-Moussa-Villani (BMV) conjecture that all coefficients of the polynomial p(t)=tr((A+tB)^m), where A and B are positive semidefinite matrices of the same size, are nonnegative. The coefficient of t^k is the trace of S_{m,k}(A, B), which is the sum of all words of length m in the letters A and B in which B appears exactly k times. We consider the case k=4 and show that S_{m,4}(A, B) is a sum of hermitian squares and commutators. In particular, the trace of S_{m,4}(A, B) is nonnegative.</dcterms:abstract> <dc:rights>deposit-license</dc:rights> <dcterms:bibliographicCitation>Publ. in: Linear and Multilinear Algebra ; 59 (2011), 1. - pp. 1-9</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-12-13T10:36:52Z</dcterms:available> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto