The tracial moment problem and trace-optimization of polynomials
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f, what is the smallest trace f(A) can attain for a tuple of matrices A? A relaxation using semide nite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives e ectively computable bounds on the optima. To test for exactness, the solution of the dual SDP is investigated. If it satis es a certain condition called atness, then the relaxation is exact. In this case it is shown how to extract global trace-optimizers with a procedure based on two ingredients. The first is the solution to the truncated tracial moment problem, and the other crucial component is the numerical implementation of the Artin-Wedderburn theorem for matrix -algebras due to Murota, Kanno, Kojima, Kojima, and Maehara. Trace-optimization of nc polynomials is a nontrivial extension of polynomial optimization in commuting variables on one side and eigenvalue optimization of nc polynomials on the other side { two topics with many applications, the most prominent being to linear systems engineering and quantum physics. The optimization problems discussed here facilitate new possibilities for applications, e.g. in operator algebras and statistical physics.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BURGDORF, Sabine, Kristijan CAFUTA, Igor KLEP, Janez POVH, 2011. The tracial moment problem and trace-optimization of polynomialsBibTex
@techreport{Burgdorf2011traci-15284, year={2011}, series={Konstanzer Schriften in Mathematik}, title={The tracial moment problem and trace-optimization of polynomials}, number={287}, author={Burgdorf, Sabine and Cafuta, Kristijan and Klep, Igor and Povh, Janez} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15284"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15284"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-05T08:48:29Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-05T08:48:29Z</dc:date> <dc:contributor>Burgdorf, Sabine</dc:contributor> <dc:creator>Cafuta, Kristijan</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15284/2/287%20Burgdorf.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2011</dcterms:issued> <dcterms:abstract xml:lang="eng">The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f, what is the smallest trace f(A) can attain for a tuple of matrices A? A relaxation using semide nite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives e ectively computable bounds on the optima. To test for exactness, the solution of the dual SDP is investigated. If it satis es a certain condition called atness, then the relaxation is exact. In this case it is shown how to extract global trace-optimizers with a procedure based on two ingredients. The first is the solution to the truncated tracial moment problem, and the other crucial component is the numerical implementation of the Artin-Wedderburn theorem for matrix -algebras due to Murota, Kanno, Kojima, Kojima, and Maehara. Trace-optimization of nc polynomials is a nontrivial extension of polynomial optimization in commuting variables on one side and eigenvalue optimization of nc polynomials on the other side { two topics with many applications, the most prominent being to linear systems engineering and quantum physics. The optimization problems discussed here facilitate new possibilities for applications, e.g. in operator algebras and statistical physics.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15284/2/287%20Burgdorf.pdf"/> <dc:creator>Povh, Janez</dc:creator> <dc:contributor>Klep, Igor</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>The tracial moment problem and trace-optimization of polynomials</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Burgdorf, Sabine</dc:creator> <dc:creator>Klep, Igor</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Cafuta, Kristijan</dc:contributor> <dc:contributor>Povh, Janez</dc:contributor> </rdf:Description> </rdf:RDF>