A local-global principle for linear dependence of noncommutative polynomials

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:247498de960c867a5b10060065ba8803

BREŠAR, Matej, Igor KLEP, 2011. A local-global principle for linear dependence of noncommutative polynomials

@techreport{Bresar2011local-15280, series={Konstanzer Schriften in Mathematik}, title={A local-global principle for linear dependence of noncommutative polynomials}, year={2011}, number={283}, author={Brešar, Matej and Klep, Igor} }

2011-09-01T11:02:53Z A local-global principle for linear dependence of noncommutative polynomials 2011 2011-09-01T11:02:53Z Klep, Igor deposit-license Abstract. A set of polynomials in noncommuting variables is called locally linearly dependent if their evaluations at tuples of matrices are always linearly dependent. By a theorem of Camino, Helton, Skelton and Ye, a nite locally<br />linearly dependent set of polynomials is linearly dependent. In this short note an alternative proof based on the theory of polynomial identities is given. The method of the proof yields generalizations to rectional local linear dependence and evaluations in general algebras over elds of arbitrary characteristic. A main feature of the proof is that it makes it possible to deduce bounds on the size of the matrices where the (directional) local linear dependence needs to be tested in order to establish linear dependence. eng Brešar, Matej Klep, Igor Brešar, Matej

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Tit283 Bresar.pdf 84

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto