Assisted descriptor selection based on visual comparative data analysis

Lade...
Vorschaubild
Dateien
Schreck_Assisted Descriptor.pdf
Schreck_Assisted Descriptor.pdfGröße: 5.76 MBDownloads: 737
Datum
2011
Autor:innen
Bremm, Sebastian
Landesberger, Tatiana von
Bernard, Jürgen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Visual feature space analysis SPP 1335
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Computer Graphics Forum. 2011, 30(3), pp. 891-900. ISSN 0167-7055. Available under: doi: 10.1111/j.1467-8659.2011.01938.x
Zusammenfassung

Exploration and selection of data descriptors representing objects using a set of features are important components in many data analysis tasks. Usually, for a given dataset, an optimal data description does not exist, as the suitable data representation is strongly use case dependent. Many solutions for selecting a suitable data description have been proposed. In most instances, they require data labels and often are black box approaches. Non-expert users have difficulties to comprehend the coherency of input, parameters, and output of these algorithms. Alternative approaches, interactive systems for visual feature selection, overburden the user with an overwhelming set of options and data views. Therefore, it is essential to offer the users a guidance in this analytical process. In this paper, we present a novel system for data description selection, which facilitates the user’s access to the data analysis process. As finding of suitable data description consists of several steps, we support the user with guidance. Our system combines automatic data analysis with interactive visualizations. By this, the system provides a recommendation for suitable data descriptor selections. It supports the comparison of data descriptors with differing dimensionality for unlabeled data. We propose specialized scores and interactive views for descriptor comparison. The visualization techniques are scatterplot-based and grid-based. For the latter case, we apply Self-Organizing Maps as adaptive grids which are well suited for large multi-dimensional data sets. As an example, we demonstrate the usability of our system on a real-world biochemical application.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Information Interfaces and Presentation, Pattern Recognition, Design Methodology, Feature evaluation and selection
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BREMM, Sebastian, Tatiana von LANDESBERGER, Jürgen BERNARD, Tobias SCHRECK, 2011. Assisted descriptor selection based on visual comparative data analysis. In: Computer Graphics Forum. 2011, 30(3), pp. 891-900. ISSN 0167-7055. Available under: doi: 10.1111/j.1467-8659.2011.01938.x
BibTex
@article{Bremm2011Assis-14920,
  year={2011},
  doi={10.1111/j.1467-8659.2011.01938.x},
  title={Assisted descriptor selection based on visual comparative data analysis},
  number={3},
  volume={30},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={891--900},
  author={Bremm, Sebastian and Landesberger, Tatiana von and Bernard, Jürgen and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/14920">
    <dc:language>eng</dc:language>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:creator>Landesberger, Tatiana von</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/14920/2/Schreck_Assisted%20Descriptor.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Assisted descriptor selection based on visual comparative data analysis</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/14920/2/Schreck_Assisted%20Descriptor.pdf"/>
    <dcterms:bibliographicCitation>First publ. in: Computer Graphics Forum ; 30 (2011), 3. - pp. 891-900</dcterms:bibliographicCitation>
    <dc:creator>Bernard, Jürgen</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Bremm, Sebastian</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-08T09:33:30Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Bremm, Sebastian</dc:contributor>
    <dcterms:abstract xml:lang="eng">Exploration and selection of data descriptors representing objects using a set of features are important components in many data analysis tasks. Usually, for a given dataset, an optimal data description does not exist, as the suitable data representation is strongly use case dependent. Many solutions for selecting a suitable data description have been proposed. In most instances, they require data labels and often are black box approaches. Non-expert users have difficulties to comprehend the coherency of input, parameters, and output of these algorithms. Alternative approaches, interactive systems for visual feature selection, overburden the user with an overwhelming set of options and data views. Therefore, it is essential to offer the users a guidance in this analytical process. In this paper, we present a novel system for data description selection, which facilitates the user’s access to the data analysis process. As finding of suitable data description consists of several steps, we support the user with guidance. Our system combines automatic data analysis with interactive visualizations. By this, the system provides a recommendation for suitable data descriptor selections. It supports the comparison of data descriptors with differing dimensionality for unlabeled data. We propose specialized scores and interactive views for descriptor comparison. The visualization techniques are scatterplot-based and grid-based. For the latter case, we apply Self-Organizing Maps as adaptive grids which are well suited for large multi-dimensional data sets. As an example, we demonstrate the usability of our system on a real-world biochemical application.</dcterms:abstract>
    <dc:contributor>Bernard, Jürgen</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:contributor>Landesberger, Tatiana von</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/14920"/>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-30T22:25:06Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen