Nonreversible Homoclinic Snaking

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

KNOBLOCH, Jürgen, Thorsten RIESS, Martin VIELITZ, 2010. Nonreversible Homoclinic Snaking

@unpublished{Knobloch2010Nonre-14455, title={Nonreversible Homoclinic Snaking}, year={2010}, author={Knobloch, Jürgen and Rieß, Thorsten and Vielitz, Martin} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/14455"> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Rieß, Thorsten</dc:creator> <dcterms:title>Nonreversible Homoclinic Snaking</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-17T16:17:18Z</dc:date> <dc:contributor>Rieß, Thorsten</dc:contributor> <dc:contributor>Vielitz, Martin</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/14455"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Vielitz, Martin</dc:creator> <dcterms:issued>2010</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:creator>Knobloch, Jürgen</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-17T16:17:18Z</dcterms:available> <dcterms:abstract xml:lang="eng">Homoclinic snaking refers to the sinusoidal snaking continuation curve of homoclinic orbits near a heteroclinic cycle connecting an equilibrium E and a periodic orbit P. Along this curve the homoclinic orbit performs more and more windings about the periodic orbit. Typically this behaviour appears in reversible Hamiltonian systems. Here we discuss this phenomenon in systems without any particular structure. We give a rigorous analytical verification of homoclinic snaking under certain assumptions on the behaviour of the stable and unstable manifolds of E and P. We show how the snaking behaviour depends on the signs of the Floquet multipliers of P. Further we present a nonsnaking scenario. Finally we show numerically that these assumptions are fulfilled in a model equation.</dcterms:abstract> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Knobloch, Jürgen</dc:contributor> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account