Nonreversible Homoclinic Snaking

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

KNOBLOCH, Jürgen, Thorsten RIESS, Martin VIELITZ, 2010. Nonreversible Homoclinic Snaking

@unpublished{Knobloch2010Nonre-14455, title={Nonreversible Homoclinic Snaking}, year={2010}, author={Knobloch, Jürgen and Rieß, Thorsten and Vielitz, Martin} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/14455"> <dcterms:title>Nonreversible Homoclinic Snaking</dcterms:title> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-17T16:17:18Z</dc:date> <dc:creator>Rieß, Thorsten</dc:creator> <dc:contributor>Rieß, Thorsten</dc:contributor> <dc:contributor>Vielitz, Martin</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/14455"/> <dc:rights>deposit-license</dc:rights> <dc:creator>Vielitz, Martin</dc:creator> <dcterms:issued>2010</dcterms:issued> <dc:creator>Knobloch, Jürgen</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-17T16:17:18Z</dcterms:available> <dcterms:abstract xml:lang="eng">Homoclinic snaking refers to the sinusoidal snaking continuation curve of homoclinic orbits near a heteroclinic cycle connecting an equilibrium E and a periodic orbit P. Along this curve the homoclinic orbit performs more and more windings about the periodic orbit. Typically this behaviour appears in reversible Hamiltonian systems. Here we discuss this phenomenon in systems without any particular structure. We give a rigorous analytical verification of homoclinic snaking under certain assumptions on the behaviour of the stable and unstable manifolds of E and P. We show how the snaking behaviour depends on the signs of the Floquet multipliers of P. Further we present a nonsnaking scenario. Finally we show numerically that these assumptions are fulfilled in a model equation.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Knobloch, Jürgen</dc:contributor> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto