Nonlinear response of dense colloidal suspensions under oscillatory shear : mode-coupling theory and FT-rheology experiments

Thumbnail Image
Date
2010
Authors
Siebenbürger, Miriam
Ballauff, Matthias
Reinheimer, Kathrin
Wilhelm, Manfred
Frey, S. J.
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Physical Review E ; 82 (2010), 6. - ISSN 1539-3755
Abstract
Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BRADER, Joseph M., Miriam SIEBENBÜRGER, Matthias BALLAUFF, Kathrin REINHEIMER, Manfred WILHELM, S. J. FREY, Fabian WEYSSER, Matthias FUCHS, 2010. Nonlinear response of dense colloidal suspensions under oscillatory shear : mode-coupling theory and FT-rheology experiments. In: Physical Review E. 82(6). ISSN 1539-3755. Available under: doi: 10.1103/PhysRevE.82.061401
BibTex
@article{Brader2010Nonli-13772,
  year={2010},
  doi={10.1103/PhysRevE.82.061401},
  title={Nonlinear response of dense colloidal suspensions under oscillatory shear : mode-coupling theory and FT-rheology experiments},
  number={6},
  volume={82},
  issn={1539-3755},
  journal={Physical Review E},
  author={Brader, Joseph M. and Siebenbürger, Miriam and Ballauff, Matthias and Reinheimer, Kathrin and Wilhelm, Manfred and Frey, S. J. and Weysser, Fabian and Fuchs, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/13772">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/13772"/>
    <dc:creator>Weysser, Fabian</dc:creator>
    <dc:creator>Brader, Joseph M.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-27T17:35:02Z</dc:date>
    <dc:contributor>Wilhelm, Manfred</dc:contributor>
    <dcterms:title>Nonlinear response of dense colloidal suspensions under oscillatory shear : mode-coupling theory and FT-rheology experiments</dcterms:title>
    <dc:creator>Ballauff, Matthias</dc:creator>
    <dc:creator>Wilhelm, Manfred</dc:creator>
    <dc:creator>Reinheimer, Kathrin</dc:creator>
    <dc:contributor>Brader, Joseph M.</dc:contributor>
    <dc:contributor>Siebenbürger, Miriam</dc:contributor>
    <dc:contributor>Reinheimer, Kathrin</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Frey, S. J.</dc:creator>
    <dc:creator>Fuchs, Matthias</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Siebenbürger, Miriam</dc:creator>
    <dc:contributor>Fuchs, Matthias</dc:contributor>
    <dcterms:abstract xml:lang="eng">Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13772/2/Fuchs_etal.pdf"/>
    <dcterms:bibliographicCitation>First publ. in: Physical Review E ; 82 (2010). -  061401</dcterms:bibliographicCitation>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-27T17:35:02Z</dcterms:available>
    <dc:contributor>Frey, S. J.</dc:contributor>
    <dc:contributor>Weysser, Fabian</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:issued>2010</dcterms:issued>
    <dc:contributor>Ballauff, Matthias</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13772/2/Fuchs_etal.pdf"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed