KOPS - Das Institutionelle Repositorium der Universität Konstanz

Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model

Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:7029fb57c0d1f83375745e5205311ed4

BIAN, Shen, Li CHEN, Michael DREHER, 2011. Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model

@techreport{Bian2011Bound-13764, title={Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model}, year={2011}, author={Bian, Shen and Chen, Li and Dreher, Michael} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/13764"> <dc:language>eng</dc:language> <dcterms:title>Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model</dcterms:title> <dc:contributor>Chen, Li</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-16T13:56:24Z</dc:date> <dc:rights>deposit-license</dc:rights> <dc:creator>Chen, Li</dc:creator> <dc:contributor>Bian, Shen</dc:contributor> <dc:creator>Bian, Shen</dc:creator> <dcterms:issued>2011</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/13764"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-16T13:56:24Z</dcterms:available> <dc:contributor>Dreher, Michael</dc:contributor> <dc:creator>Dreher, Michael</dc:creator> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dcterms:abstract xml:lang="eng">We study a singularly perturbed elliptic second order system in one space variable as it appears in a stationary quantum drift di usion model of a semiconductor. We prove the existence of solutions and their uniqueness as minimizers of a certain functional and determine rigorously the principal part of an asymptotic expansion of a boundary layer of those solutions. We prove analytical estimates of the remainder terms of this asymptotic expansion, and con rm by means of numerical simulations that these remainder estimates are sharp.</dcterms:abstract> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

dreher.pdf 55

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto