KOPS - Das Institutionelle Repositorium der Universität Konstanz

Spectral stability of small-amplitude viscous shock waves in several space dimensions

Spectral stability of small-amplitude viscous shock waves in several space dimensions


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

FREISTÜHLER, Heinrich, Peter SZMOLYAN, 2009. Spectral stability of small-amplitude viscous shock waves in several space dimensions. In: Archive for Rational Mechanics and Analysis. 195(2), pp. 353-373. ISSN 0003-9527

@article{Freistuhler2009Spect-12748, title={Spectral stability of small-amplitude viscous shock waves in several space dimensions}, year={2009}, doi={10.1007/s00205-009-0272-3}, number={2}, volume={195}, issn={0003-9527}, journal={Archive for Rational Mechanics and Analysis}, pages={353--373}, author={Freistühler, Heinrich and Szmolyan, Peter} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/12748"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-19T07:22:40Z</dcterms:available> <dcterms:title>Spectral stability of small-amplitude viscous shock waves in several space dimensions</dcterms:title> <dcterms:abstract xml:lang="eng">A planar viscous shock profile of a hyperbolic–parabolic system of conservation laws is a steady solution in a moving coordinate frame. The asymptotic stability of viscous profiles and the related vanishing-viscosity limit are delicate questions already in the well understood case of one space dimension and even more so in the case of several space dimensions. It is a natural idea to study the stability of viscous profiles by analyzing the spectrum of the linearization about the profile. The Evans function method provides a geometric dynamical-systems framework to study the eigenvalue problem. In this approach eigenvalues correspond to zeros of an essentially analytic function Ε(ρλ,ρω) which detects nontrivial intersections of the so-called stable and unstable spaces, that is, spaces of solutions that decay on one (“−∞”) or the other side (“ + ∞”) of the shock wave, respectively. In a series of pioneering papers, Kevin Zumbrun and collaborators have established in various contexts that spectral stability, that is, the non-vanishing of Ε(ρλ,ρω) and the non-vanishing of the Lopatinski–Kreiss–Majda function Δ(λ,ω), imply nonlinear stability of viscous shock profiles in several space dimensions. In this paper we show that these conditions hold true for small amplitude extreme shocks under natural assumptions. This is done by exploiting the slow-fast nature of the small-amplitude limit, which was used in a previous paper by the authors to prove spectral stability of small-amplitude shock waves in one space dimension. Geometric singular perturbation methods are applied to decompose the stable and unstable spaces into subbundles with good control over their limiting behavior. Three qualitatively different regimes are distinguished that relate the small strength e of the shock wave to appropriate ranges of values of the spectral parameters (ρλ, ρ ω). Various rescalings are used to overcome apparent degeneracies in the problem caused by loss of hyperbolicity or lack of transversality.</dcterms:abstract> <dc:rights>deposit-license</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12748"/> <dc:language>eng</dc:language> <dc:creator>Szmolyan, Peter</dc:creator> <dcterms:bibliographicCitation>First publ. in: Archive for Rational Mechanics and Analysis 195 (2010), 2, pp. 353-373</dcterms:bibliographicCitation> <dc:contributor>Freistühler, Heinrich</dc:contributor> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dc:contributor>Szmolyan, Peter</dc:contributor> <dcterms:issued>2009</dcterms:issued> <dc:creator>Freistühler, Heinrich</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-19T07:22:40Z</dc:date> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto