Subfields of ample fields : rational maps and definability

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

FEHM, Arno, 2010. Subfields of ample fields : rational maps and definability. In: Journal of Algebra. 323(6), pp. 1738-1744. ISSN 0021-8693. Available under: doi: 10.1016/j.jalgebra.2009.11.037

@article{Fehm2010Subfi-12745, title={Subfields of ample fields : rational maps and definability}, year={2010}, doi={10.1016/j.jalgebra.2009.11.037}, number={6}, volume={323}, issn={0021-8693}, journal={Journal of Algebra}, pages={1738--1744}, author={Fehm, Arno} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <bibo:uri rdf:resource=""/> <dcterms:title>Subfields of ample fields : rational maps and definability</dcterms:title> <dcterms:bibliographicCitation>Publ. in: Journal of Algebra 323 (2010), 6, pp. 1738-1744</dcterms:bibliographicCitation> <dc:date rdf:datatype="">2011-07-15T08:31:52Z</dc:date> <dcterms:abstract xml:lang="eng">Pop proved that a smooth curve C over an ample field K with C(K)≠empty set has |K| many rational points. We strengthen this result by showing that there are |K| many rational points that do not lie in a given proper subfield, even after applying a rational map. This has several consequences. For example, we gain insight into the structure of existentially definable (i.e. diophantine) subsets of ample fields.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:rights rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:available rdf:datatype="">2011-07-15T08:31:52Z</dcterms:available> <dcterms:isPartOf rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Fehm, Arno</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2010</dcterms:issued> <dc:creator>Fehm, Arno</dc:creator> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account