Spatio-temporal clustering


Dateien zu dieser Ressource

Prüfsumme: MD5:da017944609ecca0f29dfbec46504d47

KISILEVICH, Slava, Florian MANSMANN, Mirco NANNI, Salvatore RINZIVILLO, 2009. Spatio-temporal clustering. In: MAIMON, Oded, ed., Lior ROKACH, ed.. Data Mining and Knowledge Discovery Handbook. Boston, MA:Springer US, pp. 855-874. ISBN 978-0-387-09822-7. Available under: doi: 10.1007/978-0-387-09823-4_44

@incollection{Kisilevich2009Spati-12710, title={Spatio-temporal clustering}, year={2009}, doi={10.1007/978-0-387-09823-4_44}, isbn={978-0-387-09822-7}, address={Boston, MA}, publisher={Springer US}, booktitle={Data Mining and Knowledge Discovery Handbook}, pages={855--874}, editor={Maimon, Oded and Rokach, Lior}, author={Kisilevich, Slava and Mansmann, Florian and Nanni, Mirco and Rinzivillo, Salvatore} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:title>Spatio-temporal clustering</dcterms:title> <dc:date rdf:datatype="">2011-09-07T06:20:48Z</dc:date> <dc:contributor>Nanni, Mirco</dc:contributor> <dcterms:available rdf:datatype="">2011-09-07T06:20:48Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kisilevich, Slava</dc:creator> <dcterms:bibliographicCitation>First publ. in: Data Mining and Knowledge Discovery Handbook / Oded Maimon... (eds.). - New York : Springer, 2010. - 2. Ed.. - pp. 855-874</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <bibo:uri rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Mansmann, Florian</dc:creator> <dc:creator>Nanni, Mirco</dc:creator> <dspace:hasBitstream rdf:resource=""/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Spatio-temporal clustering is a process of grouping objects based on their spatial and temporal similarity. It is relatively new subfield of data mining which gained high popularity especially in geographic information sciences due to the pervasiveness of all kinds of location-based or environmental devices that record position, time or/and environmental properties of an object or set of objects in real-time. As a consequence, different types and large amounts of spatio-temporal data became available that introduce new challenges to data analysis and require novel approaches to knowledge discovery. In this chapter we concentrate on the spatio-temporal clustering in geographic space. First, we provide a classification of different types of spatio-temporal data. Then, we focus on one type of spatio-temporal clustering - trajectory clustering, provide an overview of the state-of-the-art approaches and methods of spatio-temporal clustering and finally present several scenarios in different application domains such as movement, cellular networks and environmental studies.</dcterms:abstract> <dc:contributor>Rinzivillo, Salvatore</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dc:creator>Rinzivillo, Salvatore</dc:creator> <dcterms:rights rdf:resource=""/> <dcterms:issued>2009</dcterms:issued> <dc:contributor>Kisilevich, Slava</dc:contributor> <dc:contributor>Mansmann, Florian</dc:contributor> <dcterms:hasPart rdf:resource=""/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Kisilevich_Spatio-temporal.pdf 1359

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto