Learning Attribute-to-Feature Mappings for Cold-Start Recommendations

No Thumbnail Available
Files
There are no files associated with this item.
Date
2010
Authors
Gantner, Zeno
Drumond, Lucas
Schmidt-Thieme, Lars
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published in
2010 IEEE International Conference on Data Mining. - IEEE, 2010. - pp. 176-185. - ISBN 978-1-4244-9131-5
Abstract
Cold-start scenarios in recommender systems are situations in which no prior events, like ratings or clicks, are known for certain users or items. To compute predictions in such cases, additional information about users (user attributes, e.g. gender, age, geographical location, occupation) and items (item attributes, e.g. genres, product categories, keywords) must be used. We describe a method that maps such entity (e.g. user or item) attributes to the latent features of a matrix (or higher-dimensional) factorization model. With such mappings, the factors of a MF model trained by standard techniques can be applied to the new-user and the new-item problem, while retaining its advantages, in particular speed and predictive accuracy. We use the mapping concept to construct an attribute-aware matrix factorization model for item recommendation from implicit, positive-only feedback. Experiments on the new-item problem show that this approach provides good predictive accuracy, while the prediction time only grows by a constant factor.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
collaborative filtering,cold-start,matrix factorization,factorization models,long tail,recommender systems
Conference
2010 IEEE 10th International Conference on Data Mining (ICDM), Dec 13, 2010 - Dec 17, 2010, Sydney, Australia
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690GANTNER, Zeno, Lucas DRUMOND, Christoph FREUDENTHALER, Steffen RENDLE, Lars SCHMIDT-THIEME, 2010. Learning Attribute-to-Feature Mappings for Cold-Start Recommendations. 2010 IEEE 10th International Conference on Data Mining (ICDM). Sydney, Australia, Dec 13, 2010 - Dec 17, 2010. In: 2010 IEEE International Conference on Data Mining. IEEE, pp. 176-185. ISBN 978-1-4244-9131-5. Available under: doi: 10.1109/ICDM.2010.129
BibTex
@inproceedings{Gantner2010-12Learn-12687,
  year={2010},
  doi={10.1109/ICDM.2010.129},
  title={Learning Attribute-to-Feature Mappings for Cold-Start Recommendations},
  isbn={978-1-4244-9131-5},
  publisher={IEEE},
  booktitle={2010 IEEE International Conference on Data Mining},
  pages={176--185},
  author={Gantner, Zeno and Drumond, Lucas and Freudenthaler, Christoph and Rendle, Steffen and Schmidt-Thieme, Lars}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12687">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-08T06:24:31Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12687"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2010-12</dcterms:issued>
    <dcterms:bibliographicCitation>First publ. in: 2010 IEEE 10th International Conference on Data Mining (ICDM 2010) : Sydney, Australia, 13 - 17 December 2010 ; [proceedings] / [IEEE Computer Society]. Ed.: Geoffrey I. Webb ... . Piscataway, NJ : IEEE, 2010, pp. 176-185</dcterms:bibliographicCitation>
    <dc:creator>Drumond, Lucas</dc:creator>
    <dcterms:abstract xml:lang="eng">Cold-start scenarios in recommender systems are situations in which no prior events, like ratings or clicks, are known for certain users or items. To compute predictions in such cases, additional information about users (user attributes, e.g. gender, age, geographical location, occupation) and items (item attributes, e.g. genres, product categories, keywords) must be used. We describe a method that maps such entity (e.g. user or item) attributes to the latent features of a matrix (or higher-dimensional) factorization model. With such mappings, the factors of a MF model trained by standard techniques can be applied to the new-user and the new-item problem, while retaining its advantages, in particular speed and predictive accuracy. We use the mapping concept to construct an attribute-aware matrix factorization model for item recommendation from implicit, positive-only feedback. Experiments on the new-item problem show that this approach provides good predictive accuracy, while the prediction time only grows by a constant factor.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:contributor>Drumond, Lucas</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-08T06:24:31Z</dcterms:available>
    <dc:creator>Gantner, Zeno</dc:creator>
    <dcterms:title>Learning Attribute-to-Feature Mappings for Cold-Start Recommendations</dcterms:title>
    <dc:contributor>Freudenthaler, Christoph</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Rendle, Steffen</dc:contributor>
    <dc:contributor>Schmidt-Thieme, Lars</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Rendle, Steffen</dc:creator>
    <dc:creator>Freudenthaler, Christoph</dc:creator>
    <dc:creator>Schmidt-Thieme, Lars</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Gantner, Zeno</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed