KOPS - Das Institutionelle Repositorium der Universität Konstanz

Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns

Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:a7973a98870dad29a2ace8e670285776

ANDRIENKO, Gennady L., Natalia ANDRIENKO, S. BREMM, Tobias SCHRECK, Tatiana von LANDESBERGER, Peter BAK, Daniel KEIM, 2010. Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns. In: Computer Graphics Forum. 29(3), pp. 913-922. ISSN 0167-7055. Available under: doi: 10.1111/j.1467-8659.2009.01664.x

@article{Andrienko2010Space-12645, title={Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns}, year={2010}, doi={10.1111/j.1467-8659.2009.01664.x}, number={3}, volume={29}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={913--922}, author={Andrienko, Gennady L. and Andrienko, Natalia and Bremm, S. and Schreck, Tobias and Landesberger, Tatiana von and Bak, Peter and Keim, Daniel} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/12645"> <dc:rights>deposit-license</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103605204-4002607-1"/> <dc:contributor>Bak, Peter</dc:contributor> <dc:creator>Andrienko, Natalia</dc:creator> <dc:creator>Landesberger, Tatiana von</dc:creator> <dc:contributor>Andrienko, Gennady L.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Spatiotemporal data pose serious challenges to analysts in geographic and other domains. Owing to the complexity of the geospatial and temporal components, this kind of data cannot be analyzed by fully automatic methods but require the involvement of the human analyst's expertise. For a comprehensive analysis, the data need to be considered from two complementary perspectives: (1) as spatial distributions (situations) changing over time and (2) as profiles of local temporal variation distributed over space. In order to support the visual analysis of spatiotemporal data, we suggest a framework based on the “Self-Organizing Map” (SOM) method combined with a set of interactive visual tools supporting both analytic perspectives. SOM can be considered as a combination of clustering and dimensionality reduction. In the first perspective, SOM is applied to the spatial situations at different time moments or intervals. In the other perspective, SOM is applied to the local temporal evolution profiles. The integrated visual analytics environment includes interactive coordinated displays enabling various transformations of spatiotemporal data and post-processing of SOM results. The SOM matrix display offers an overview of the groupings of data objects and their two-dimensional arrangement by similarity. This view is linked to a cartographic map display, a time series graph, and a periodic pattern view. The linkage of these views supports the analysis of SOM results in both the spatial and temporal contexts. The variable SOM grid coloring serves as an instrument for linking the SOM with the corresponding items in the other displays. The framework has been validated on a large dataset with real city traffic data, where expected spatiotemporal patterns have been successfully uncovered. We also describe the use of the framework for discovery of previously unknown patterns in 41-years time series of 7 crime rate attributes in the states of the USA.</dcterms:abstract> <dcterms:title>Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns</dcterms:title> <dc:creator>Keim, Daniel</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Andrienko, Gennady L.</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12645"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12645/1/keim.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T13:16:36Z</dc:date> <dc:creator>Bremm, S.</dc:creator> <dcterms:issued>2010</dcterms:issued> <dc:contributor>Andrienko, Natalia</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-06T13:16:36Z</dcterms:available> <dc:creator>Bak, Peter</dc:creator> <dcterms:bibliographicCitation>First publ. in: Computer Graphics Forum ; 29 (2010), 3. - S. 913-922</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dc:contributor>Landesberger, Tatiana von</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12645/1/keim.pdf"/> <dc:contributor>Bremm, S.</dc:contributor> <dc:contributor>Keim, Daniel</dc:contributor> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

keim.pdf 177

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto