Maximum-Score Diversity Selection for Early Drug Discovery
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Diversity selection is a common task in early drug discovery. One drawback of current approaches is that usually only the structural diversity is taken into account and activity information is ignored. In this article we present a modified version of diversity selection - which we term "Maximum-Score Diversity Selection" - that additionally takes the estimated or predicted activities of the molecules into account. We show that finding an optimal solution to this problem is computationally very expensive (it is NP-hard) and therefore heuristic approaches are needed.
After a discussion of existing approaches we present our new method which is computationally far more efficient but at the same time produces comparable results. We conclude by validating these theoretical differences on several datasets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MEINL, Thorsten, Claude OSTERMANN, Michael R. BERTHOLD, 2011. Maximum-Score Diversity Selection for Early Drug Discovery. In: Journal of Chemical Information and Modeling. 2011, 51(2), pp. 237-247. ISSN 1549-9596. eISSN 1549-960X. Available under: doi: 10.1021/ci100426rBibTex
@article{Meinl2011-02-28Maxim-12389, year={2011}, doi={10.1021/ci100426r}, title={Maximum-Score Diversity Selection for Early Drug Discovery}, number={2}, volume={51}, issn={1549-9596}, journal={Journal of Chemical Information and Modeling}, pages={237--247}, author={Meinl, Thorsten and Ostermann, Claude and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12389"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12389/1/Meinl.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Ostermann, Claude</dc:creator> <dc:contributor>Ostermann, Claude</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-27T23:25:04Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Maximum-Score Diversity Selection for Early Drug Discovery</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12389/1/Meinl.pdf"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-01T09:56:36Z</dc:date> <dc:creator>Berthold, Michael R.</dc:creator> <dcterms:bibliographicCitation>Journal of Chemical Information and Modeling, 51 (2011), 2, S. 237-247</dcterms:bibliographicCitation> <dc:contributor>Meinl, Thorsten</dc:contributor> <dcterms:abstract xml:lang="eng">Diversity selection is a common task in early drug discovery. One drawback of current approaches is that usually only the structural diversity is taken into account and activity information is ignored. In this article we present a modified version of diversity selection - which we term "Maximum-Score Diversity Selection" - that additionally takes the estimated or predicted activities of the molecules into account. We show that finding an optimal solution to this problem is computationally very expensive (it is NP-hard) and therefore heuristic approaches are needed.<br />After a discussion of existing approaches we present our new method which is computationally far more efficient but at the same time produces comparable results. We conclude by validating these theoretical differences on several datasets.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12389"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2011-02-28</dcterms:issued> <dc:language>eng</dc:language> <dc:creator>Meinl, Thorsten</dc:creator> </rdf:Description> </rdf:RDF>