Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können derzeit keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted currently.)
Type of Publication: | Working Paper/Technical Report |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-3143 |
Author: | Franke, Günter; Stapleton, Richard C.; Subrahmanyam, Marti G. |
Year of publication: | 1999 |
Series: | CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie ; 1999/01 |
Summary: |
An important determinant of option prices is the elasticity of the pricing kernel used to price all claims in the economy. In this paper, we first show that for a given forward price of the underlying asset, option prices are higher when the elasticity of the pricing kernel is declining than when it is constant. We then investigate the implications of the elasticity of the pricing kernel for the stochastic process followed by the underlying asset. Given that the underlying information process follows a geometric Brownian motion, we demonstrate that constant elasticity of the pricing kernel is equivalent toaBrownian motion for the forward price of the underlying asset, so that the Black-Scholes formula correctly prices options on the asset. In contrast, declining elasticity implies that the forward price process is no longer a Brownian motion: it has higher volatility and exhibits autocorrelation. In this case, the Black-Scholes formula underprices all options.
|
Subject (DDC): | 330 Economics |
Link to License: | In Copyright |
FRANKE, Günter, Richard C. STAPLETON, Marti G. SUBRAHMANYAM, 1999. When are Options Overpriced? : the Black-Scholes Model and Alternative Characterisation of the Pricing Kernel
@techreport{Franke1999Optio-12256, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={When are Options Overpriced? : the Black-Scholes Model and Alternative Characterisation of the Pricing Kernel}, year={1999}, number={1999/01}, author={Franke, Günter and Stapleton, Richard C. and Subrahmanyam, Marti G.} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/12256"> <dcterms:title>When are Options Overpriced? : the Black-Scholes Model and Alternative Characterisation of the Pricing Kernel</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12256/1/314_1.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:format>application/pdf</dc:format> <dc:contributor>Stapleton, Richard C.</dc:contributor> <dc:contributor>Subrahmanyam, Marti G.</dc:contributor> <dc:contributor>Franke, Günter</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:43:50Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12256"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12256/1/314_1.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Subrahmanyam, Marti G.</dc:creator> <dc:creator>Stapleton, Richard C.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:43:50Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/46"/> <dcterms:abstract xml:lang="eng">An important determinant of option prices is the elasticity of the pricing kernel used to price all claims in the economy. In this paper, we first show that for a given forward price of the underlying asset, option prices are higher when the elasticity of the pricing kernel is declining than when it is constant. We then investigate the implications of the elasticity of the pricing kernel for the stochastic process followed by the underlying asset. Given that the underlying information process follows a geometric Brownian motion, we demonstrate that constant elasticity of the pricing kernel is equivalent toaBrownian motion for the forward price of the underlying asset, so that the Black-Scholes formula correctly prices options on the asset. In contrast, declining elasticity implies that the forward price process is no longer a Brownian motion: it has higher volatility and exhibits autocorrelation. In this case, the Black-Scholes formula underprices all options.</dcterms:abstract> <dcterms:issued>1999</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/46"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Franke, Günter</dc:creator> </rdf:Description> </rdf:RDF>
314_1.pdf | 518 |