Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators

Thumbnail Image
Date
1999
Authors
Inkmann, Joachim
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie; 1999/04
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
This paper compares generalized method of moments (GMM) and simulated maximum likeli-hood (SML) approaches to the estimation of the panel probit model. Both techniques circum-vent multiple integration of joint density functions without the need to restrict the error term variance-covariance matrix of the latent normal regression model. Particular attention is paid to a three-stage GMM estimator based on nonparametric estimation of the optimal instru-ments for given conditional moment functions. Monte Carlo experiments are carried out which focus on the small sample consequences of misspecification of the error term variance-covariance matrix. The correctly specified experiment reveals the asymptotic efficiency ad-vantages of SML. The GMM estimators outperform SML in the presence of misspecification in terms of multiplicative heteroskedasticity. This holds in particular for the three-stage GMM estimator. Allowing for heteroskedasticity over time increases the robustness with respect to misspecification in terms of multiplicative heteroskedasticity. An application to the product innovation activities of German manufacturing firms is presented.
Summary in another language
Subject (DDC)
330 Economics
Keywords
panel probit model,heteroskedasticity,conditional moment restrictions,optimal instruments,k-nearest neighbor estimation,GHK simulator
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690INKMANN, Joachim, 1999. Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators
BibTex
@techreport{Inkmann1999Missp-11931,
  year={1999},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators},
  number={1999/04},
  author={Inkmann, Joachim}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/11931">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:41:11Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/11931"/>
    <dcterms:title>Misspecified Heteroskedasticity in the Panel Probit Model : a Small Sample Comparison of GMM and SML Estimators</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11931/3/315_1.pdf"/>
    <dc:creator>Inkmann, Joachim</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11931/3/315_1.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>1999</dcterms:issued>
    <dcterms:abstract xml:lang="eng">This paper compares generalized method of moments (GMM) and simulated maximum likeli-hood (SML) approaches to the estimation of the panel probit model. Both techniques circum-vent multiple integration of joint density functions without the need to restrict the error term variance-covariance matrix of the latent normal regression model. Particular attention is paid to a three-stage GMM estimator based on nonparametric estimation of the optimal instru-ments for given conditional moment functions. Monte Carlo experiments are carried out which focus on the small sample consequences of misspecification of the error term variance-covariance matrix. The correctly specified experiment reveals the asymptotic efficiency ad-vantages of SML. The GMM estimators outperform SML in the presence of misspecification in terms of multiplicative heteroskedasticity. This holds in particular for the three-stage GMM estimator. Allowing for heteroskedasticity over time increases the robustness with respect to misspecification in terms of multiplicative heteroskedasticity. An application to the product innovation activities of German manufacturing firms is presented.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Inkmann, Joachim</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:41:11Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed