Reproducibility of graph metrics of human brain functional networks

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:624ff5cb5519d033ac7e126138e40826

DEUKER, Lorena, Edward T. BULLMORE, Marie SMITH, Søren CHRISTENSEN, Pradeep J. NATHAN, Brigitte ROCKSTROH, Danielle S. BASSETT, 2009. Reproducibility of graph metrics of human brain functional networks. In: NeuroImage. 47(4), pp. 1460-1468. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2009.05.035

@article{Deuker2009Repro-10083, title={Reproducibility of graph metrics of human brain functional networks}, year={2009}, doi={10.1016/j.neuroimage.2009.05.035}, number={4}, volume={47}, issn={1053-8119}, journal={NeuroImage}, pages={1460--1468}, author={Deuker, Lorena and Bullmore, Edward T. and Smith, Marie and Christensen, Søren and Nathan, Pradeep J. and Rockstroh, Brigitte and Bassett, Danielle S.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/10083"> <dc:contributor>Smith, Marie</dc:contributor> <dcterms:abstract xml:lang="eng">Graph theory provides many metrics of complex network organization that can be applied to analysis of brain networks derived from neuroimaging data. Here we investigated the test retest reliability of graph metrics of functional networks derived from magnetoencephalography (MEG) data recorded in two sessions from 16 healthy volunteers who were studied at rest and during performance of the n-back working memory task in each session. For each subject's data at each session, we used a wavelet filter to estimate the mutual information (MI) between each pair of MEG sensors in each of the classical frequency intervals from ã to low ä in the overall range 1 60 Hz. Undirected binary graphs were generated by thresholding the MI matrix and 8 global network metrics were estimated: the clustering coefficient, path length, small-worldness, efficiency, cost-efficiency, assortativity, hierarchy, and synchronizability. Reliability of each graph metric was assessed using the intraclass correlation (ICC). Good reliability was demonstrated for most metrics applied to the nback data (mean ICC=0.62). Reliability was greater for metrics in lower frequency networks. Higher frequency ã- and â-band networks were less reliable at a global level but demonstrated high reliability of nodal metrics in frontal and parietal regions. Performance of the n-back task was associated with greater reliability than measurements on resting state data. Task practice was also associated with greater reliability. Collectively these results suggest that graph metrics are sufficiently reliable to be considered for future longitudinal studies of functional brain network changes.</dcterms:abstract> <dc:contributor>Deuker, Lorena</dc:contributor> <dc:creator>Bullmore, Edward T.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Deuker, Lorena</dc:creator> <dc:creator>Nathan, Pradeep J.</dc:creator> <dc:contributor>Rockstroh, Brigitte</dc:contributor> <dc:rights>deposit-license</dc:rights> <dcterms:bibliographicCitation>First publ. in: NeuroImage ; 47 (2009), 4. - S. 1460-1468</dcterms:bibliographicCitation> <dc:contributor>Nathan, Pradeep J.</dc:contributor> <dc:creator>Bassett, Danielle S.</dc:creator> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/43"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/10083/1/deuker09rep.pdf"/> <dc:contributor>Bassett, Danielle S.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Christensen, Søren</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/10083"/> <dcterms:title>Reproducibility of graph metrics of human brain functional networks</dcterms:title> <dc:contributor>Bullmore, Edward T.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/43"/> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103416863-3868037-7"/> <dc:format>application/pdf</dc:format> <dc:contributor>Christensen, Søren</dc:contributor> <dc:creator>Rockstroh, Brigitte</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:14:00Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/10083/1/deuker09rep.pdf"/> <dcterms:issued>2009</dcterms:issued> <dc:creator>Smith, Marie</dc:creator> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

deuker09rep.pdf 317

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto