RLHF-Blender : A Configurable Interactive Interface for Learning from Diverse Human Feedback

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2023
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Sonstiges, Konferenz
Publikationsstatus
Published
Erschienen in
Interactive Learning with Implicit Human Feedback Workshop at ICML 2023
Zusammenfassung

To use reinforcement learning from human feedback (RLHF) in practical applications, it is crucial to learn reward models from diverse sources of human feedback, and to consider human factors involved in providing feedback of different types. However, systematic study of learning from diverse types of feedback is held back by limited standardized tooling available to researchers. To bridge this gap, we propose RLHF-Blender, a configurable, interactive interface for learning from human feedback. RLHF-Blender provides a modular experimentation framework and implementation that enables researchers to systematically investigate the properties and qualities of human feedback for reward learning. The system facilitates the exploration of various feedback types, including demonstrations, rankings, comparisons, and natural language instructions, as well as studies considering the impact of human factors on their effectiveness. We discuss a set of concrete research opportunities enabled by RLHF-Blender. More information is available at our website.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Interactive Learning with Implicit Human Feedback (ILHF) Workshop at ICML 2023, 23. Juli 2023 - 29. Juli 2023, Hawaii
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690METZ, Yannick, David LINDNER, Raphaël BAUR, Daniel A. KEIM, Mennatallah EL-ASSADY, 2023. RLHF-Blender : A Configurable Interactive Interface for Learning from Diverse Human Feedback. Interactive Learning with Implicit Human Feedback (ILHF) Workshop at ICML 2023. Hawaii, 23. Juli 2023 - 29. Juli 2023. In: Interactive Learning with Implicit Human Feedback Workshop at ICML 2023
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67538">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67538"/>
    <dc:creator>Baur, Raphaël</dc:creator>
    <dcterms:abstract>To use reinforcement learning from human feedback (RLHF) in practical applications, it is crucial to learn reward models from diverse sources of human feedback, and to consider human factors involved in providing feedback of different types. However, systematic study of learning from diverse types of feedback is held back by limited standardized tooling available to researchers. To bridge this gap, we propose RLHF-Blender, a configurable, interactive interface for learning from human feedback. RLHF-Blender provides a modular experimentation framework and implementation that enables researchers to systematically investigate the properties and qualities of human feedback for reward learning. The system facilitates the exploration of various feedback types, including demonstrations, rankings, comparisons, and natural language instructions, as well as studies considering the impact of human factors on their effectiveness. We discuss a set of concrete research opportunities enabled by RLHF-Blender. More information is available at our website.</dcterms:abstract>
    <dcterms:title>RLHF-Blender : A Configurable Interactive Interface for Learning from Diverse Human Feedback</dcterms:title>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Lindner, David</dc:creator>
    <dc:contributor>Lindner, David</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Metz, Yannick</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-08T14:26:53Z</dcterms:available>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-08T14:26:53Z</dc:date>
    <dc:contributor>Metz, Yannick</dc:contributor>
    <dcterms:issued>2023</dcterms:issued>
    <dc:contributor>Baur, Raphaël</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2023-08-08
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen