Publikation:

RLHF-Blender : A Configurable Interactive Interface for Learning from Diverse Human Feedback

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2023

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Sonstiges, Konferenz
Publikationsstatus
Published

Erschienen in

Interactive Learning with Implicit Human Feedback Workshop at ICML 2023

Zusammenfassung

To use reinforcement learning from human feedback (RLHF) in practical applications, it is crucial to learn reward models from diverse sources of human feedback, and to consider human factors involved in providing feedback of different types. However, systematic study of learning from diverse types of feedback is held back by limited standardized tooling available to researchers. To bridge this gap, we propose RLHF-Blender, a configurable, interactive interface for learning from human feedback. RLHF-Blender provides a modular experimentation framework and implementation that enables researchers to systematically investigate the properties and qualities of human feedback for reward learning. The system facilitates the exploration of various feedback types, including demonstrations, rankings, comparisons, and natural language instructions, as well as studies considering the impact of human factors on their effectiveness. We discuss a set of concrete research opportunities enabled by RLHF-Blender. More information is available at our website.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Interactive Learning with Implicit Human Feedback (ILHF) Workshop at ICML 2023, 23. Juli 2023 - 29. Juli 2023, Hawaii
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690METZ, Yannick, David LINDNER, Raphaël BAUR, Daniel A. KEIM, Mennatallah EL-ASSADY, 2023. RLHF-Blender : A Configurable Interactive Interface for Learning from Diverse Human Feedback. Interactive Learning with Implicit Human Feedback (ILHF) Workshop at ICML 2023. Hawaii, 23. Juli 2023 - 29. Juli 2023. In: Interactive Learning with Implicit Human Feedback Workshop at ICML 2023
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67538">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67538"/>
    <dc:creator>Baur, Raphaël</dc:creator>
    <dcterms:abstract>To use reinforcement learning from human feedback (RLHF) in practical applications, it is crucial to learn reward models from diverse sources of human feedback, and to consider human factors involved in providing feedback of different types. However, systematic study of learning from diverse types of feedback is held back by limited standardized tooling available to researchers. To bridge this gap, we propose RLHF-Blender, a configurable, interactive interface for learning from human feedback. RLHF-Blender provides a modular experimentation framework and implementation that enables researchers to systematically investigate the properties and qualities of human feedback for reward learning. The system facilitates the exploration of various feedback types, including demonstrations, rankings, comparisons, and natural language instructions, as well as studies considering the impact of human factors on their effectiveness. We discuss a set of concrete research opportunities enabled by RLHF-Blender. More information is available at our website.</dcterms:abstract>
    <dcterms:title>RLHF-Blender : A Configurable Interactive Interface for Learning from Diverse Human Feedback</dcterms:title>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Lindner, David</dc:creator>
    <dc:contributor>Lindner, David</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Metz, Yannick</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-08T14:26:53Z</dcterms:available>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-08T14:26:53Z</dc:date>
    <dc:contributor>Metz, Yannick</dc:contributor>
    <dcterms:issued>2023</dcterms:issued>
    <dc:contributor>Baur, Raphaël</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2023-08-08

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen